Small-screen computing devices continue to proliferate, such as smartphones, computing bracelets, rings, and watches. Like many computing devices, these small-screen devices often use virtual keyboards to interact with users. On these small screens, however, many people find interacting through virtual keyboards to be difficult, as they often result in slow and inaccurate inputs. This frustrates users and limits the applicability of small-screen computing devices.
To address this problem, optical finger- and hand-tracking techniques have been developed, which enable gesture tracking not made on the screen. These optical techniques, however, have been large, costly, or inaccurate thereby limiting their usefulness in addressing usability issues with small-screen computing devices. Other conventional techniques have also been attempted with little success, including radar-tracking systems. These radar tracking systems struggle to determine small gesture motions without having large, complex, or expensive radar systems due to the resolution of the radar tracking system being constrained by the hardware of the radar system.
This document describes techniques for radio frequency (RF) based micro-motion tracking. These techniques enable even millimeter-scale hand motions to be tracked. To do so, radar signals are used from radar systems that, with conventional techniques, would only permit resolutions of a centimeter or more.
This summary is provided to introduce simplified concepts concerning RF-based micro-motion tracking, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
Embodiments of techniques and devices for RF-based micro-motion tracking are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Techniques are described herein that enable RF-based micro-motion tracking. The techniques track millimeter-scale hand motions from radar signals, even from radar systems with a hardware-constrained conventional resolution that is coarser than the tracked millimeter-scale resolution.
A gesturing hand is a complex, non-rigid target with multiple dynamic components. Because of this, the range and velocity of hand sub-components, such as finger tips, a palm, or a thumb, are typically sub-resolution limits of conventional hardware. Thus, conventional hardware must be large, expensive, or complex to track small motions. Even for those conventional hardware that can track small motions, for real-time gesture-recognition applications, tracking algorithms are computationally constrained.
Consider a conventional system's hardware-constrained resolution, illustrated in
To gain a better resolution, multiple antennas are often used in conventional radar systems, increasing complexity and cost. This is shown with a radar field 112 provided by a conventional radar system 114 with three separate radar-emitting elements 116 and antennas 118. Reflections are received from a hand 120 acting within the radar field 112 for each of the separate radar-emitting elements 116. Thus, each of twelve elements 122 are constrained at their size by the radar system's hardware. Note that a micro-motion of the hand 120, such as moving an index-finger against a thumb, would be within a particular element 122-1 of the elements 122. In such a case, the conventional system and techniques cannot determine that the micro-motion was made.
Contrast
As noted, radar systems have hardware-parameter-based displacement-sensing resolution limits for conventional techniques. These limits are based on parameters of the hardware of the system, such that a resolution of the simple radar system 202 has a range resolution 208 and cross-range resolution 210, for a hardware-constrained spatial resolution 212 (shown with three examples). As described below, however, the RF-based micro-motion tracking techniques enable micro-motion tracking of motions that are smaller, and thus a resolution that is finer, than the hardware-constrained limitations would conventionally suggest. Thus, the techniques permit a resolution of the relative displacement that is finer than the wavelength or beam width of the radar system.
This document now turns to an example computing device in which RF-based micro-motion tracking can be used, and then follows with an example method and gestures, and ends with an example computing system.
Example Computing Device
The computing device 302 includes one or more computer processors 304 and computer-readable media 306, which includes memory media and storage media. Applications and/or an operating system (not shown) embodied as computer-readable instructions on computer-readable media 306 can be executed by processors 304 to provide some of the functionalities described herein. The computer-readable media 306 also includes a micro-motion tracking module 308 and a recognition module 310, described below.
The computing device 302 may also include one or more network interfaces 312 for communicating data over wired, wireless, or optical networks and a display 314. The network interface 312 may communicate data over a local-area-network (LAN), a wireless local-area-network (WLAN), a personal-area-network (PAN), a wide-area-network (WAN), an intranet, the Internet, a peer-to-peer network, point-to-point network, a mesh network, and the like. The display 314 can be integral with the computing device 302 or associated with it, such as with the desktop computer 302-1.
The computing device 302 may also include or be associated with a radar system, such as the radar system 202 of
The micro-motion tracking module 308 is configured to extract relative dynamics from a radar signal representing a superposition of reflections of two or more points of a hand within a radar field. Consider in more detail the radar system 202 of
In more detail, for each of these points the micro-motion tracking module 308 may determine their relative velocity and energy. Thus, assume that the velocity of the thumb point 406 is 1.7 meters per second away, the index-finger point 408 is 2.1 meters per second toward, and the knuckle point 410 is zero meters per second. The micro-motion tracking module 308 determines a velocity profile for these points of the hand using the radar signal.
Consider, for example,
With this velocity profile 502, and other prior-determined or later-determined velocity profiles, the techniques can determine relative velocities between the points of the hand 404. Here the highest relative velocity is between the thumb point 406 and the index-finger point 408. The micro-motion tracking module 308 may determine a relative velocity (and then displacement) between the thumb point 406 and the knuckle point 410 or the index-finger point 408, though the relative displacement between the thumb point 406 and the index-finger point 408 is the largest relative displacement, which can improve gesture recognition and fineness of control. This resolution, however, may also or instead be better against other points, such as in cases where noise or other signal quality concerns are present for a point or points of the hand 404.
As noted, the velocity profile 502 indicates energies of each point of the hand 404. This energy is a measure of reflected energy intensity as a function of target range from each point to the emitter or antenna element, e.g., a radial distance from the radar-emitting element. A time delay between the transmitted signal and the reflection is observed through Doppler frequency, and thus the radial velocity is determined, and then integrated for radial distance. This observation of Doppler frequency can be through a range-Doppler-time data cube for the radar signal, though such a format is not required. Whatever the form for the data of the radar signal having the superposition of reflections of the points, integrating the relative velocities can quantitatively combine the Doppler-determined relative dynamics and an unwrapped signal phase of the radar signal. Optionally or in addition, an extended Kalman filter may be used to incorporate raw phase with the Doppler centroid for the point of the hand, which allows for nonlinear phase unwrapping.
In more detail, the following equations represent a manner in which to determine the velocity profile 502. Equation 1 represents incremental changes in phase as a function of incremental change in distance over a time period. More specifically, φ is phase, and thus Δφ(t,T) is change in phase. ri is distance, Δri is displacement, and λ is wavelength, thus Δri(t,T)/λ is change in displacement over wavelength. Each incremental change in phase equates to four π of the displacement change.
Δφ(t,T)=4πΔri(t,T)/λ Equation 1
Equation 2 represents frequency, fDoppler,i(T), which is proportional to the time derivative of the phase, ½πdφ(t,T)/dT. Then, plugging in the time derivative of the displacement and wavelength, 2/λdr(t,T)/dT, results in velocity, v, again over wavelength.
fDoppler,i(T)=½πdφ(t,T)/dT=2/λdr(t,T)/dT=2v(T)/λ Equation 2
Equations 1 and 2 show the relationship between incremental velocity, such as points of a hand making micro-motions, to how this is shown in the signal reflected from those points of the hand.
Equation 3 shows how to estimate the frequency of the micro motions. The techniques calculate a Doppler spectrum using Doppler centroids, fDoppler,centroid(T), which shows how much energy is at each of the frequencies. The techniques pull out each of the frequencies that corresponds to each of the micro-motions using a centroid summation, ΣffF(f).
fDoppler,centroid(T)=ΣffF(f) Equation 3
Thus, the techniques build a profile of energies, such as the example velocity profile 502 of
Relative velocities chart 504 illustrates a relative velocity 506 over time. While shown for clarity of explanation, absolute thumb velocity 508 of the thumb point 406 and absolute index-finger velocity 510 of the index-finger 408 are not required. The relative velocity 506 can be determined without determining the absolute velocities. Showing these, however, illustrates the relative velocity between these velocities, and how it can change over time (note the slowdown of the thumb point 406 from 2.1 units to 1.9 units over the six time units).
With the relative velocities 506 determined over the six time units, a relative displacement can then be determined by integrating the relative velocities. This is shown with relative displacement chart 512, which illustrates a displacement trajectory 514. This displacement trajectory 514 is the displacement change of the thumb point 406 relative the index-finger point 408 over the six time units. Thus, the thumb point 406 and the index-finger point 408 move apart over the six time units by 24 arbitrary displacement units.
In some cases, the micro-motion tracking module 308 determines a weighted average of the relative velocities and then integrates the weighted averages to find their relative displacement. The weighted average can be weighted based on velocity readings having a higher probability of an accurate reading, lower noise, or other factors.
As shown in the example of
Returning to
Assume, for example, that the gesture determined is a micro-motion of a thumb against a finger, similar to rolling a serrated wheel of a traditional mechanical watch. This example is illustrated in
With the displacement between the thumb point 608 and the index-finger point 610 made by the micro-motion tracking module 308, the recognition module 310 determines the gesture, and passes this gesture (generally as multiple sub-gestures as a complete gesture having sub-gesture portions is made) to an application—here to an application of the smart watch, which in turn alters user interface 612 to scroll up text being displayed (scrolling shown at scroll arrow 614 and results shown at starting text 616 and ending text 618). Tracked gestures can be large or small—millimeter scale is not required, nor is use of a single hand or even a human hand, as devices, such as robotic arms tracked to determine control for the robot, can be tracked. Thus, the micro-motion tracking module 308 may track micro-gestures having millimeter or finer resolution and a maximum of five centimeters in total relative displacement, or track a user's arm, hand or fingers relative to another hand, arm, or object, or larger gestures, such as multi-handed gestures with relative displacements of even a meter in size.
Example Method
At 702, a radar field is provided, such as shown in
At 704, a radar signal representing a superposition of reflections of multiple points of a hand within the radar field is received. As noted, this can be received from as few as a single antenna. Each of the points of the hand has a movement relative to the emitter or antenna, and thus a movement relative to each other point. As few as two points can be represented and analyzed as noted below.
At 706, the radar signal can be filtered, such as with a Moving Target Indicator (MTI) filter. Filtering the radar signal is not required, but can remove noise or help to locate elements of the signal, such as those representing points having greater movement than others.
At 708, a velocity profile is determined from the radar signal. Examples of this determination are provided above, such as in
At 710, relative velocities are extracted from the velocity profile. To determine multiple relative velocities over time, one or more prior-determined or later-determined velocity profiles are also determined. Thus, operations 704 and 708 can be repeated by the techniques, shown with a repeat arrow in
At 712, a displacement trajectory is determined by integrating the multiple relative velocities. Relative velocities extracted from multiple velocity profiles over multiple times are integrated. An example of this is shown in
At 714, a gesture is determined based on the displacement trajectory between the multiple points of the hand. As noted above, this gesture can be fine and small, such as a micro-gesture performed by one hand, or multiple hands or objects, or of a larger size.
At 716, the gesture is passed to an application or device. The gesture, on receipt by the application or device, is effective to control the application or device, such as to control or alter a display, function, or capability of the application or device. The device can be remote, peripheral, or the system on which the method 700 is performed.
This determined displacement trajectory shows a displacement in the example of
Through operations of method 700, relative dynamics are extracted from the radar signal representing the superposition of the reflections of the multiple points of the hand within the radar field. These relative dynamics indicate a displacement of points of the hand relative one to another, from which micro-motion gestures can be determined. As noted above, in some cases extracting relative dynamics from the superposition determines micro-Doppler centroids for the points. These micro-Doppler centroids enable computationally light super-resolution velocity estimates to be determined. Thus, the computational resources needed are relatively low compared to conventional radar techniques, further enabling use of these RF-based micro-motion techniques in small or resource-limited devices, such as some wearable devices and appliances. Not only can these techniques be used on resource-limited devices, but the computationally light determination can permit faster response to the gesture, such as in real time as a small, fine gesture (e.g., a micro-gesture) is made to make small, fine control of a device.
Further, the RF-based micro-motion techniques, by using micro-Doppler centroids, permits greater robustness to noise and clutter than use of Doppler profile peaks. To increase resolution, the micro-motion tracking module 308 may use the phase change of the radar signal to extract millimeter and sub-millimeter displacements for high-frequency movements of the points.
Example Gestures
The RF-based micro-motion techniques described in
This is the case for
By way of further example, consider
The rolling micro-motion gesture 900 is shown at a starting position 910 and with four sub-gestures positions 912, 914, 916, and 918, though these are shown for visual brevity, as many more movements, at even sub-millimeter resolution through the full gesture, can be recognized. To better visualize an effect of the rolling micro-motion gesture 900, consider a marked wheel 920. This marked wheel 920 is not held by the thumb 902 and the index-finger 904, but is shown to aid the reader in seeing ways in which the gesture, as it is performed, can be recognized and used to make fine-resolution control, similar to the way in which a mark 922 moves as the marked wheel 920 is rotated, from a start point at mark 922-1, to mark 922-2, to mark 922-3, to mark 922-4, and ending at mark 922-5.
As the rolling micro-motion gesture 900 is performed, the micro-motion tracking module 308 determines displacement trajectories between a point or points of each of the thumb 902 and the index-finger 904, passes these to the gesture module 310, which in turn determines a gesture or portion thereof being performed. This gesture is passed to a device or application, which is thereby controlled by the micro-motion gesture. For this type of micro-motion, an application may advance through media being played (or reverse if the gesture is performed backwards), scroll through text or content in a display, turn up volume for music, a temperature for a thermostat, or another parameter. Further, because the RF-based micro-motion techniques have a high resolution and light computational requirements, fine motions in real time can be recognized, allowing a user to move her thumb and finger back and forth to easily settle on an exact, desired control, such as a precise volume 34 on a scale of 100 or to precisely find a frame in a video being played.
Example Computing System
The computing system 1000 includes communication devices 1002 that enable wired and/or wireless communication of device data 1004 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data 1004 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device (e.g., an identity of an actor performing a gesture). Media content stored on the computing system 1000 can include any type of audio, video, and/or image data. The computing system 1000 includes one or more data inputs 1006 via which any type of data, media content, and/or inputs can be received, such as human utterances, interactions with a radar field, user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.
The computing system 1000 also includes communication interfaces 1008, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 1008 provide a connection and/or communication links between the computing system 1000 and a communication network by which other electronic, computing, and communication devices communicate data with the computing system 1000.
The computing system 1000 includes one or more processors 1010 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of the computing system 1000 and to enable techniques for, or in which can be embodied, RF-based micro-motion tracking. Alternatively or in addition, the computing system 1000 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits, which are generally identified at 1012. Although not shown, the computing system 1000 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
The computing system 1000 also includes computer-readable media 1014, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. The computing system 1000 can also include a mass storage media device (storage media) 1016.
The computer-readable media 1014 provides data storage mechanisms to store the device data 1004, as well as various device applications 1018 and any other types of information and/or data related to operational aspects of the computing system 1000. For example, an operating system 1020 can be maintained as a computer application with the computer-readable media 1014 and executed on the processors 1010. The device applications 1018 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, an abstraction module or gesture module and so on. The device applications 1018 also include system components, engines, or managers to implement RF-based micro-motion tracking, such as the micro-motion tracking module 308 and the recognition module 310.
The computing system 1000 may also include, or have access to, one or more of radar systems, such as the radar system 202 having the radar-emitting element 204 and the antenna element 206. While not shown, one or more elements of the micro-motion tracking module 308 or the recognition module 310 may be operated, in whole or in part, through hardware or firmware.
Although techniques using, and apparatuses including, RF-based micro-motion tracking have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations of ways in which to determine RF-based micro-motion tracking.
This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/252,477, filed Jan. 18, 2019, that is a continuation application and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/142,689, filed Apr. 29, 2016, that claims priority under 35 U.S.C. § 119(e) to U.S. Patent Provisional Application Ser. No. 62/155,357 filed Apr. 30, 2015, and U.S. Patent Provisional Application Ser. No. 62/167,823 filed May 28, 2015, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3610874 | Gagliano | Oct 1971 | A |
3752017 | Lloyd et al. | Aug 1973 | A |
3953706 | Harris et al. | Apr 1976 | A |
4104012 | Ferrante | Aug 1978 | A |
4654967 | Thenner | Apr 1987 | A |
4700044 | Hokanson et al. | Oct 1987 | A |
4795998 | Dunbar et al. | Jan 1989 | A |
4838797 | Dodier | Jun 1989 | A |
5016500 | Conrad et al. | May 1991 | A |
5121124 | Spivey et al. | Jun 1992 | A |
5298715 | Chalco et al. | Mar 1994 | A |
5309916 | Hatschek | May 1994 | A |
5341979 | Gupta | Aug 1994 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5468917 | Brodsky et al. | Nov 1995 | A |
5564571 | Zanotti | Oct 1996 | A |
5656798 | Kubo et al. | Aug 1997 | A |
5724707 | Kirk et al. | Mar 1998 | A |
5798798 | Rector et al. | Aug 1998 | A |
6032450 | Blum | Mar 2000 | A |
6037893 | Lipman | Mar 2000 | A |
6080690 | Lebby et al. | Jun 2000 | A |
6101431 | Niwa et al. | Aug 2000 | A |
6210771 | Post et al. | Apr 2001 | B1 |
6254544 | Hayashi | Jul 2001 | B1 |
6303924 | Adan et al. | Oct 2001 | B1 |
6313825 | Gilbert | Nov 2001 | B1 |
6340979 | Beaton et al. | Jan 2002 | B1 |
6380882 | Hegnauer | Apr 2002 | B1 |
6386757 | Konno | May 2002 | B1 |
6440593 | Ellison et al. | Aug 2002 | B2 |
6492980 | Sandbach | Dec 2002 | B2 |
6493933 | Post et al. | Dec 2002 | B1 |
6513833 | Breed et al. | Feb 2003 | B2 |
6513970 | Tabata et al. | Feb 2003 | B1 |
6524239 | Reed et al. | Feb 2003 | B1 |
6543668 | Fujii et al. | Apr 2003 | B1 |
6616613 | Goodman | Sep 2003 | B1 |
6711354 | Kameyama | Mar 2004 | B2 |
6717065 | Hosaka et al. | Apr 2004 | B2 |
6802720 | Weiss et al. | Oct 2004 | B2 |
6833807 | Flacke et al. | Dec 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
6854985 | Weiss | Feb 2005 | B1 |
6929484 | Weiss et al. | Aug 2005 | B2 |
6970128 | Dwelly et al. | Nov 2005 | B1 |
6997882 | Parker et al. | Feb 2006 | B1 |
7019682 | Louberg et al. | Mar 2006 | B1 |
7134879 | Sugimoto et al. | Nov 2006 | B2 |
7158076 | Fiore et al. | Jan 2007 | B2 |
7164820 | Eves et al. | Jan 2007 | B2 |
7194371 | McBride et al. | Mar 2007 | B1 |
7205932 | Fiore | Apr 2007 | B2 |
7223105 | Weiss et al. | May 2007 | B2 |
7230610 | Jung et al. | Jun 2007 | B2 |
7249954 | Weiss | Jul 2007 | B2 |
7266532 | Sutton et al. | Sep 2007 | B2 |
7299964 | Jayaraman et al. | Nov 2007 | B2 |
7310236 | Takahashi et al. | Dec 2007 | B2 |
7317416 | Flom et al. | Jan 2008 | B2 |
7348285 | Dhawan et al. | Mar 2008 | B2 |
7365031 | Swallow et al. | Apr 2008 | B2 |
7421061 | Boese et al. | Sep 2008 | B2 |
7462035 | Lee et al. | Dec 2008 | B2 |
7528082 | Krans et al. | May 2009 | B2 |
7544627 | Tao et al. | Jun 2009 | B2 |
7578195 | DeAngelis et al. | Aug 2009 | B2 |
7644488 | Aisenbrey | Jan 2010 | B2 |
7647093 | Bojovic et al. | Jan 2010 | B2 |
7670144 | Ito et al. | Mar 2010 | B2 |
7677729 | Vilser et al. | Mar 2010 | B2 |
7691067 | Westbrook et al. | Apr 2010 | B2 |
7698154 | Marchosky | Apr 2010 | B2 |
7750841 | Oswald et al. | Jul 2010 | B2 |
7791700 | Bellamy | Sep 2010 | B2 |
7834276 | Chou et al. | Nov 2010 | B2 |
7845023 | Swatee | Dec 2010 | B2 |
7941676 | Glaser | May 2011 | B2 |
7952512 | Delker et al. | May 2011 | B1 |
7999722 | Beeri et al. | Aug 2011 | B2 |
8062220 | Kurtz et al. | Nov 2011 | B2 |
8063815 | Valo et al. | Nov 2011 | B2 |
8169404 | Boillot | May 2012 | B1 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8193929 | Siu et al. | Jun 2012 | B1 |
8199104 | Park et al. | Jun 2012 | B2 |
8282232 | Hsu et al. | Oct 2012 | B2 |
8289185 | Alonso | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8314732 | Oswald et al. | Nov 2012 | B2 |
8326313 | McHenry et al. | Dec 2012 | B2 |
8334226 | Nhan et al. | Dec 2012 | B2 |
8341762 | Balzano | Jan 2013 | B2 |
8344949 | Moshfeghi | Jan 2013 | B2 |
8367942 | Howell et al. | Feb 2013 | B2 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8505474 | Kang et al. | Aug 2013 | B2 |
8509882 | Albert et al. | Aug 2013 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
8527146 | Jackson et al. | Sep 2013 | B1 |
8549829 | Song et al. | Oct 2013 | B2 |
8560972 | Wilson | Oct 2013 | B2 |
8562526 | Heneghan et al. | Oct 2013 | B2 |
8569189 | Bhattacharya et al. | Oct 2013 | B2 |
8576110 | Valentine | Nov 2013 | B2 |
8614689 | Nishikawa et al. | Dec 2013 | B2 |
8655004 | Prest et al. | Feb 2014 | B2 |
8700137 | Albert | Apr 2014 | B2 |
8758020 | Burdea et al. | Jun 2014 | B2 |
8759713 | Sheats | Jun 2014 | B2 |
8764651 | Tran | Jul 2014 | B2 |
8785778 | Streeter et al. | Jul 2014 | B2 |
8790257 | Libbus et al. | Jul 2014 | B2 |
8814574 | Selby et al. | Aug 2014 | B2 |
8819812 | Weber et al. | Aug 2014 | B1 |
8854433 | Rafii | Oct 2014 | B1 |
8860602 | Nohara et al. | Oct 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8948839 | Longinotti-Buitoni et al. | Feb 2015 | B1 |
9055879 | Selby et al. | Jun 2015 | B2 |
9075429 | Karakotsios et al. | Jul 2015 | B1 |
9093289 | Vicard et al. | Jul 2015 | B2 |
9125456 | Chow | Sep 2015 | B2 |
9141194 | Keyes et al. | Sep 2015 | B1 |
9148949 | Zhou et al. | Sep 2015 | B2 |
9223494 | DeSalvo et al. | Dec 2015 | B1 |
9229102 | Wright et al. | Jan 2016 | B1 |
9230160 | Kanter | Jan 2016 | B1 |
9235241 | Newham et al. | Jan 2016 | B2 |
9316727 | Sentelle et al. | Apr 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9335825 | Rautiainen et al. | May 2016 | B2 |
9346167 | O'Connor et al. | May 2016 | B2 |
9354709 | Heller et al. | May 2016 | B1 |
9412273 | Ricci | Aug 2016 | B2 |
9508141 | Khachaturian et al. | Nov 2016 | B2 |
9511877 | Masson | Dec 2016 | B2 |
9524597 | Ricci | Dec 2016 | B2 |
9569001 | Mistry et al. | Feb 2017 | B2 |
9575560 | Poupyrev et al. | Feb 2017 | B2 |
9582933 | Mosterman | Feb 2017 | B1 |
9588625 | Poupyrev | Mar 2017 | B2 |
9594443 | VanBlon et al. | Mar 2017 | B2 |
9600080 | Poupyrev | Mar 2017 | B2 |
9693592 | Robinson et al. | Jul 2017 | B2 |
9699663 | Jovancevic | Jul 2017 | B1 |
9746551 | Scholten et al. | Aug 2017 | B2 |
9766742 | Papakostas | Sep 2017 | B2 |
9778749 | Poupyrev | Oct 2017 | B2 |
9807619 | Tsai et al. | Oct 2017 | B2 |
9811164 | Poupyrev | Nov 2017 | B2 |
9817109 | Saboo et al. | Nov 2017 | B2 |
9837760 | Karagozler et al. | Dec 2017 | B2 |
9848780 | DeBusschere et al. | Dec 2017 | B1 |
9870056 | Yao | Jan 2018 | B1 |
9921660 | Poupyrev | Mar 2018 | B2 |
9933908 | Poupyrev | Apr 2018 | B2 |
9947080 | Nguyen et al. | Apr 2018 | B2 |
9958541 | Kishigami et al. | May 2018 | B2 |
9971414 | Gollakota et al. | May 2018 | B2 |
9971415 | Poupyrev et al. | May 2018 | B2 |
9983747 | Poupyrev | May 2018 | B2 |
9994233 | Diaz-Jimenez et al. | Jun 2018 | B2 |
10016162 | Rogers et al. | Jul 2018 | B1 |
10027923 | Chang | Jul 2018 | B1 |
10034630 | Lee et al. | Jul 2018 | B2 |
10063427 | Brown | Aug 2018 | B1 |
10064582 | Rogers | Sep 2018 | B2 |
10073590 | Dascola et al. | Sep 2018 | B2 |
10080528 | DeBusschere et al. | Sep 2018 | B2 |
10082950 | Lapp | Sep 2018 | B2 |
10088908 | Poupyrev et al. | Oct 2018 | B1 |
10139916 | Poupyrev | Nov 2018 | B2 |
10155274 | Robinson et al. | Dec 2018 | B2 |
10175781 | Karagozler et al. | Jan 2019 | B2 |
10203405 | Mazzaro et al. | Feb 2019 | B2 |
10203763 | Poupyrev et al. | Feb 2019 | B1 |
10222469 | Gillian et al. | Mar 2019 | B1 |
10241581 | Lien et al. | Mar 2019 | B2 |
10268321 | Poupyrev | Apr 2019 | B2 |
10285456 | Poupyrev et al. | May 2019 | B2 |
10300370 | Amihood et al. | May 2019 | B1 |
10310620 | Lien et al. | Jun 2019 | B2 |
10310621 | Lien et al. | Jun 2019 | B1 |
10376195 | Reid et al. | Aug 2019 | B1 |
10379621 | Schwesig et al. | Aug 2019 | B2 |
10401490 | Gillian et al. | Sep 2019 | B2 |
10409385 | Poupyrev | Sep 2019 | B2 |
10459080 | Schwesig et al. | Oct 2019 | B1 |
10492302 | Karagozler et al. | Nov 2019 | B2 |
10496182 | Lien et al. | Dec 2019 | B2 |
10503883 | Gillian et al. | Dec 2019 | B1 |
10509478 | Poupyrev et al. | Dec 2019 | B2 |
10540001 | Poupyrev et al. | Jan 2020 | B1 |
10572027 | Poupyrev et al. | Feb 2020 | B2 |
10579150 | Gu et al. | Mar 2020 | B2 |
10642367 | Poupyrev | May 2020 | B2 |
10660379 | Poupyrev et al. | May 2020 | B2 |
10664059 | Poupyrev | May 2020 | B2 |
10664061 | Poupyrev | May 2020 | B2 |
10705185 | Lien et al. | Jul 2020 | B1 |
10768712 | Schwesig et al. | Sep 2020 | B2 |
10817065 | Lien et al. | Oct 2020 | B1 |
10817070 | Lien et al. | Oct 2020 | B2 |
10908696 | Amihood et al. | Feb 2021 | B2 |
10931934 | Richards et al. | Feb 2021 | B2 |
10936081 | Poupyrev | Mar 2021 | B2 |
10936085 | Poupyrev et al. | Mar 2021 | B2 |
10948996 | Poupyrev et al. | Mar 2021 | B2 |
11080556 | Gillian et al. | Aug 2021 | B1 |
11103015 | Poupyrev et al. | Aug 2021 | B2 |
11132065 | Gillian et al. | Sep 2021 | B2 |
11140787 | Karagozler et al. | Oct 2021 | B2 |
11169988 | Poupyrev et al. | Nov 2021 | B2 |
11175743 | Lien et al. | Nov 2021 | B2 |
11221682 | Poupyrev | Jan 2022 | B2 |
11256335 | Poupyrev et al. | Feb 2022 | B2 |
11385721 | Lien et al. | Jul 2022 | B2 |
11481040 | Gillian et al. | Oct 2022 | B2 |
11592909 | Poupyrev et al. | Feb 2023 | B2 |
11656336 | Amihood et al. | May 2023 | B2 |
20010030624 | Schwoegler | Oct 2001 | A1 |
20010035836 | Miceli et al. | Nov 2001 | A1 |
20020009972 | Amento et al. | Jan 2002 | A1 |
20020080156 | Abbott et al. | Jun 2002 | A1 |
20020170897 | Hall | Nov 2002 | A1 |
20030005030 | Sutton et al. | Jan 2003 | A1 |
20030036685 | Goodman | Feb 2003 | A1 |
20030071750 | Benitz | Apr 2003 | A1 |
20030093000 | Nishio et al. | May 2003 | A1 |
20030100228 | Bungo et al. | May 2003 | A1 |
20030119391 | Swallow et al. | Jun 2003 | A1 |
20030122677 | Kail | Jul 2003 | A1 |
20040008137 | Hassebrock et al. | Jan 2004 | A1 |
20040009729 | Hill et al. | Jan 2004 | A1 |
20040046736 | Pryor et al. | Mar 2004 | A1 |
20040102693 | DeBusschere et al. | May 2004 | A1 |
20040157662 | Tsuchiya | Aug 2004 | A1 |
20040249250 | McGee et al. | Dec 2004 | A1 |
20040259391 | Jung et al. | Dec 2004 | A1 |
20050069695 | Jung et al. | Mar 2005 | A1 |
20050128124 | Greneker et al. | Jun 2005 | A1 |
20050148876 | Endoh et al. | Jul 2005 | A1 |
20050195330 | Zacks | Sep 2005 | A1 |
20050231419 | Mitchell | Oct 2005 | A1 |
20050267366 | Murashita et al. | Dec 2005 | A1 |
20060035554 | Glaser et al. | Feb 2006 | A1 |
20060040739 | Wells | Feb 2006 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060061504 | Leach, Jr. et al. | Mar 2006 | A1 |
20060125803 | Westerman et al. | Jun 2006 | A1 |
20060136997 | Telek et al. | Jun 2006 | A1 |
20060139162 | Flynn | Jun 2006 | A1 |
20060139314 | Bell | Jun 2006 | A1 |
20060148351 | Tao et al. | Jul 2006 | A1 |
20060157734 | Onodero et al. | Jul 2006 | A1 |
20060166620 | Sorensen | Jul 2006 | A1 |
20060170584 | Romero et al. | Aug 2006 | A1 |
20060209021 | Yoo et al. | Sep 2006 | A1 |
20060244654 | Cheng et al. | Nov 2006 | A1 |
20060258205 | Locher et al. | Nov 2006 | A1 |
20060284757 | Zemany | Dec 2006 | A1 |
20070024488 | Zemany et al. | Feb 2007 | A1 |
20070024946 | Panasyuk et al. | Feb 2007 | A1 |
20070026695 | Lee et al. | Feb 2007 | A1 |
20070027369 | Pagnacco et al. | Feb 2007 | A1 |
20070030195 | Steinway et al. | Feb 2007 | A1 |
20070118043 | Oliver et al. | May 2007 | A1 |
20070161921 | Rausch | Jul 2007 | A1 |
20070164896 | Suzuki et al. | Jul 2007 | A1 |
20070176821 | Flom et al. | Aug 2007 | A1 |
20070192647 | Glaser | Aug 2007 | A1 |
20070197115 | Eves et al. | Aug 2007 | A1 |
20070197878 | Shklarski | Aug 2007 | A1 |
20070210074 | Maurer et al. | Sep 2007 | A1 |
20070237423 | Tico et al. | Oct 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080002027 | Kondo et al. | Jan 2008 | A1 |
20080015422 | Wessel | Jan 2008 | A1 |
20080024438 | Collins et al. | Jan 2008 | A1 |
20080039731 | McCombie et al. | Feb 2008 | A1 |
20080059578 | Albertson et al. | Mar 2008 | A1 |
20080065291 | Breed | Mar 2008 | A1 |
20080074307 | Boric-Lubecke et al. | Mar 2008 | A1 |
20080134102 | Movold et al. | Jun 2008 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20080168396 | Matas et al. | Jul 2008 | A1 |
20080194204 | Duet et al. | Aug 2008 | A1 |
20080194975 | MacQuarrie et al. | Aug 2008 | A1 |
20080211766 | Westerman et al. | Sep 2008 | A1 |
20080233822 | Swallow et al. | Sep 2008 | A1 |
20080278450 | Lashina | Nov 2008 | A1 |
20080282665 | Speleers | Nov 2008 | A1 |
20080291158 | Park et al. | Nov 2008 | A1 |
20080303800 | Elwell | Dec 2008 | A1 |
20080316085 | Rofougaran et al. | Dec 2008 | A1 |
20080320419 | Matas et al. | Dec 2008 | A1 |
20090002220 | Lovberg et al. | Jan 2009 | A1 |
20090018408 | Ouchi et al. | Jan 2009 | A1 |
20090018428 | Dias et al. | Jan 2009 | A1 |
20090033585 | Lang | Feb 2009 | A1 |
20090053950 | Surve | Feb 2009 | A1 |
20090056300 | Chung et al. | Mar 2009 | A1 |
20090058820 | Hinckley | Mar 2009 | A1 |
20090113298 | Jung et al. | Apr 2009 | A1 |
20090115617 | Sano et al. | May 2009 | A1 |
20090118648 | Kandori et al. | May 2009 | A1 |
20090149036 | Lee et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090203244 | Toonder | Aug 2009 | A1 |
20090226043 | Angell et al. | Sep 2009 | A1 |
20090253585 | Diatchenko et al. | Oct 2009 | A1 |
20090270690 | Roos et al. | Oct 2009 | A1 |
20090278915 | Kramer et al. | Nov 2009 | A1 |
20090288762 | Wolfel | Nov 2009 | A1 |
20090292468 | Wu et al. | Nov 2009 | A1 |
20090295712 | Ritzau | Dec 2009 | A1 |
20090299197 | Antonelli et al. | Dec 2009 | A1 |
20090303100 | Zemany | Dec 2009 | A1 |
20090319181 | Khosravy et al. | Dec 2009 | A1 |
20100013676 | Do et al. | Jan 2010 | A1 |
20100045513 | Pett et al. | Feb 2010 | A1 |
20100050133 | Nishihara et al. | Feb 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100060570 | Underkoffler et al. | Mar 2010 | A1 |
20100065320 | Urano | Mar 2010 | A1 |
20100069730 | Bergstrom et al. | Mar 2010 | A1 |
20100071205 | Graumann et al. | Mar 2010 | A1 |
20100094141 | Puswella | Apr 2010 | A1 |
20100109938 | Oswald et al. | May 2010 | A1 |
20100152600 | Droitcour et al. | Jun 2010 | A1 |
20100179820 | Harrison et al. | Jul 2010 | A1 |
20100198067 | Mahfouz et al. | Aug 2010 | A1 |
20100201586 | Michalk | Aug 2010 | A1 |
20100204550 | Heneghan et al. | Aug 2010 | A1 |
20100205667 | Anderson et al. | Aug 2010 | A1 |
20100208035 | Pinault et al. | Aug 2010 | A1 |
20100225562 | Smith | Sep 2010 | A1 |
20100234094 | Gagner et al. | Sep 2010 | A1 |
20100241009 | Petkie | Sep 2010 | A1 |
20100002912 | Solinsky | Oct 2010 | A1 |
20100281438 | Latta et al. | Nov 2010 | A1 |
20100292549 | Schuler | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100313414 | Sheats | Dec 2010 | A1 |
20100324384 | Moon et al. | Dec 2010 | A1 |
20100325770 | Chung et al. | Dec 2010 | A1 |
20110003664 | Richard | Jan 2011 | A1 |
20110010014 | Oexman et al. | Jan 2011 | A1 |
20110018795 | Jang | Jan 2011 | A1 |
20110029038 | Hyde et al. | Feb 2011 | A1 |
20110073353 | Lee et al. | Mar 2011 | A1 |
20110083111 | Forutanpour et al. | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110118564 | Sankai | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110166940 | Bangera et al. | Jul 2011 | A1 |
20110181509 | Rautiainen | Jul 2011 | A1 |
20110181510 | Hakala et al. | Jul 2011 | A1 |
20110193939 | Vassigh et al. | Aug 2011 | A1 |
20110197263 | Stinson, III | Aug 2011 | A1 |
20110202404 | van der Riet | Aug 2011 | A1 |
20110213218 | Weiner et al. | Sep 2011 | A1 |
20110221666 | Newton et al. | Sep 2011 | A1 |
20110234492 | Ajmera et al. | Sep 2011 | A1 |
20110239118 | Yamaoka et al. | Sep 2011 | A1 |
20110242305 | Peterson et al. | Oct 2011 | A1 |
20110245688 | Arora et al. | Oct 2011 | A1 |
20110279303 | Smith | Nov 2011 | A1 |
20110286585 | Hodge | Nov 2011 | A1 |
20110303341 | Meiss et al. | Dec 2011 | A1 |
20110307842 | Chiang et al. | Dec 2011 | A1 |
20110316888 | Sachs et al. | Dec 2011 | A1 |
20110318985 | McDermid | Dec 2011 | A1 |
20120001875 | Li et al. | Jan 2012 | A1 |
20120013571 | Yeh et al. | Jan 2012 | A1 |
20120019168 | Noda et al. | Jan 2012 | A1 |
20120029369 | Icove et al. | Feb 2012 | A1 |
20120047468 | Santos et al. | Feb 2012 | A1 |
20120068876 | Bangera et al. | Mar 2012 | A1 |
20120075958 | Hintz | Mar 2012 | A1 |
20120092284 | Rofougaran et al. | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120123232 | Najarian et al. | May 2012 | A1 |
20120127082 | Kushler et al. | May 2012 | A1 |
20120144934 | Russell et al. | Jun 2012 | A1 |
20120146950 | Park et al. | Jun 2012 | A1 |
20120150493 | Casey et al. | Jun 2012 | A1 |
20120154313 | Au et al. | Jun 2012 | A1 |
20120156926 | Kato et al. | Jun 2012 | A1 |
20120174299 | Balzano | Jul 2012 | A1 |
20120174736 | Wang et al. | Jul 2012 | A1 |
20120182222 | Moloney | Jul 2012 | A1 |
20120191223 | Dharwada et al. | Jul 2012 | A1 |
20120193801 | Gross et al. | Aug 2012 | A1 |
20120200600 | Demaine | Aug 2012 | A1 |
20120220835 | Chung | Aug 2012 | A1 |
20120243374 | Dahl | Sep 2012 | A1 |
20120248093 | Ulrich et al. | Oct 2012 | A1 |
20120254810 | Heck et al. | Oct 2012 | A1 |
20120268310 | Kim | Oct 2012 | A1 |
20120268416 | Pirogov et al. | Oct 2012 | A1 |
20120270564 | Gum et al. | Oct 2012 | A1 |
20120276849 | Hyde et al. | Nov 2012 | A1 |
20120280900 | Wang et al. | Nov 2012 | A1 |
20120298748 | Factor et al. | Nov 2012 | A1 |
20120310665 | Xu et al. | Dec 2012 | A1 |
20130016070 | Starner et al. | Jan 2013 | A1 |
20130027218 | Schwarz et al. | Jan 2013 | A1 |
20130035563 | Angelides | Feb 2013 | A1 |
20130046544 | Kay et al. | Feb 2013 | A1 |
20130053653 | Cuddihy et al. | Feb 2013 | A1 |
20130076649 | Myers et al. | Mar 2013 | A1 |
20130076788 | Ben Zvi | Mar 2013 | A1 |
20130078624 | Holmes et al. | Mar 2013 | A1 |
20130079649 | Mestha et al. | Mar 2013 | A1 |
20130082922 | Miller | Apr 2013 | A1 |
20130083173 | Geisner et al. | Apr 2013 | A1 |
20130086533 | Stienstra | Apr 2013 | A1 |
20130096439 | Lee et al. | Apr 2013 | A1 |
20130102217 | Jeon | Apr 2013 | A1 |
20130104084 | Mlyniec et al. | Apr 2013 | A1 |
20130106710 | Ashbrook | May 2013 | A1 |
20130113647 | Sentelle et al. | May 2013 | A1 |
20130113830 | Suzuki | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130132931 | Bruns et al. | May 2013 | A1 |
20130147833 | Aubauer et al. | Jun 2013 | A1 |
20130150735 | Cheng | Jun 2013 | A1 |
20130154919 | Tan | Jun 2013 | A1 |
20130161078 | Li | Jun 2013 | A1 |
20130169471 | Lynch | Jul 2013 | A1 |
20130176161 | Derham et al. | Jul 2013 | A1 |
20130176258 | Dahl et al. | Jul 2013 | A1 |
20130194173 | Zhu et al. | Aug 2013 | A1 |
20130195330 | Kim et al. | Aug 2013 | A1 |
20130196716 | Muhammad | Aug 2013 | A1 |
20130207962 | Oberdorfer et al. | Aug 2013 | A1 |
20130222232 | Kong et al. | Aug 2013 | A1 |
20130229508 | Li et al. | Sep 2013 | A1 |
20130241765 | Kozma et al. | Sep 2013 | A1 |
20130245986 | Grokop et al. | Sep 2013 | A1 |
20130249793 | Zhu et al. | Sep 2013 | A1 |
20130253029 | Jain et al. | Sep 2013 | A1 |
20130260630 | Ito et al. | Oct 2013 | A1 |
20130263029 | Rossi et al. | Oct 2013 | A1 |
20130278499 | Anderson | Oct 2013 | A1 |
20130278501 | Bulzacki | Oct 2013 | A1 |
20130281024 | Rofougaran et al. | Oct 2013 | A1 |
20130283203 | Batraski et al. | Oct 2013 | A1 |
20130310700 | Wiard et al. | Nov 2013 | A1 |
20130322729 | Mestha et al. | Dec 2013 | A1 |
20130332438 | Li et al. | Dec 2013 | A1 |
20130345569 | Mestha et al. | Dec 2013 | A1 |
20140005809 | Frei et al. | Jan 2014 | A1 |
20140022108 | Alberth et al. | Jan 2014 | A1 |
20140028539 | Newham et al. | Jan 2014 | A1 |
20140035737 | Rashid et al. | Feb 2014 | A1 |
20140049487 | Konertz et al. | Feb 2014 | A1 |
20140050354 | Heim et al. | Feb 2014 | A1 |
20140051941 | Messerschmidt | Feb 2014 | A1 |
20140070957 | Longinotti-Buitoni et al. | Mar 2014 | A1 |
20140072190 | Wu et al. | Mar 2014 | A1 |
20140073486 | Ahmed et al. | Mar 2014 | A1 |
20140073969 | Zou et al. | Mar 2014 | A1 |
20140081100 | Muhsin et al. | Mar 2014 | A1 |
20140095480 | Marantz et al. | Apr 2014 | A1 |
20140097979 | Nohara et al. | Apr 2014 | A1 |
20140121540 | Raskin | May 2014 | A1 |
20140135631 | Brumback et al. | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140139430 | Leung | May 2014 | A1 |
20140139616 | Pinter et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140145955 | Gomez et al. | May 2014 | A1 |
20140149859 | Van Dyken et al. | May 2014 | A1 |
20140181509 | Liu | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140184499 | Kim | Jul 2014 | A1 |
20140188989 | Stekkelpak et al. | Jul 2014 | A1 |
20140191939 | Penn et al. | Jul 2014 | A1 |
20140200416 | Kashef et al. | Jul 2014 | A1 |
20140201690 | Holz | Jul 2014 | A1 |
20140203080 | Hintz | Jul 2014 | A1 |
20140208275 | Mongia et al. | Jul 2014 | A1 |
20140215389 | Walsh et al. | Jul 2014 | A1 |
20140239065 | Zhou et al. | Aug 2014 | A1 |
20140244277 | Krishna Rao et al. | Aug 2014 | A1 |
20140246415 | Wittkowski | Sep 2014 | A1 |
20140247212 | Kim et al. | Sep 2014 | A1 |
20140250515 | Jakobsson | Sep 2014 | A1 |
20140253431 | Gossweiler et al. | Sep 2014 | A1 |
20140253709 | Bresch et al. | Sep 2014 | A1 |
20140262478 | Harris et al. | Sep 2014 | A1 |
20140275854 | Venkatraman et al. | Sep 2014 | A1 |
20140280295 | Kurochkin et al. | Sep 2014 | A1 |
20140281975 | Anderson | Sep 2014 | A1 |
20140282877 | Mahaffey et al. | Sep 2014 | A1 |
20140297006 | Sadhu | Oct 2014 | A1 |
20140298266 | Lapp | Oct 2014 | A1 |
20140300506 | Alton et al. | Oct 2014 | A1 |
20140306936 | Dahl et al. | Oct 2014 | A1 |
20140309855 | Tran | Oct 2014 | A1 |
20140316261 | Lux et al. | Oct 2014 | A1 |
20140318699 | Longinotti-Buitoni et al. | Oct 2014 | A1 |
20140324888 | Xie et al. | Oct 2014 | A1 |
20140329567 | Chan et al. | Nov 2014 | A1 |
20140333467 | Inomata | Nov 2014 | A1 |
20140343392 | Yang | Nov 2014 | A1 |
20140347295 | Kim et al. | Nov 2014 | A1 |
20140357369 | Callens et al. | Dec 2014 | A1 |
20140368378 | Crain et al. | Dec 2014 | A1 |
20140368441 | Touloumtzis | Dec 2014 | A1 |
20140376788 | Xu et al. | Dec 2014 | A1 |
20150002391 | Chen | Jan 2015 | A1 |
20150009096 | Lee et al. | Jan 2015 | A1 |
20150026815 | Barrett | Jan 2015 | A1 |
20150029050 | Driscoll et al. | Jan 2015 | A1 |
20150030256 | Brady et al. | Jan 2015 | A1 |
20150040040 | Balan et al. | Feb 2015 | A1 |
20150046183 | Cireddu | Feb 2015 | A1 |
20150062033 | Ishihara | Mar 2015 | A1 |
20150068069 | Tran et al. | Mar 2015 | A1 |
20150077282 | Mohamadi | Mar 2015 | A1 |
20150084855 | Song et al. | Mar 2015 | A1 |
20150085060 | Fish et al. | Mar 2015 | A1 |
20150091820 | Rosenberg et al. | Apr 2015 | A1 |
20150091858 | Rosenberg et al. | Apr 2015 | A1 |
20150091859 | Rosenberg et al. | Apr 2015 | A1 |
20150091903 | Costello et al. | Apr 2015 | A1 |
20150095987 | Potash et al. | Apr 2015 | A1 |
20150099941 | Tran | Apr 2015 | A1 |
20150100328 | Kress et al. | Apr 2015 | A1 |
20150106770 | Shah et al. | Apr 2015 | A1 |
20150109164 | Takaki | Apr 2015 | A1 |
20150112606 | He et al. | Apr 2015 | A1 |
20150133017 | Liao et al. | May 2015 | A1 |
20150143601 | Longinotti-Buitoni et al. | May 2015 | A1 |
20150145805 | Liu | May 2015 | A1 |
20150162729 | Reversat et al. | Jun 2015 | A1 |
20150177866 | Hwang et al. | Jun 2015 | A1 |
20150185314 | Corcos et al. | Jul 2015 | A1 |
20150199045 | Robucci et al. | Jul 2015 | A1 |
20150204973 | Nohara et al. | Jul 2015 | A1 |
20150205358 | Lyren | Jul 2015 | A1 |
20150223733 | Al-Alusi | Aug 2015 | A1 |
20150226004 | Thompson | Aug 2015 | A1 |
20150229885 | Offenhaeuser | Aug 2015 | A1 |
20150256763 | Niemi | Sep 2015 | A1 |
20150257653 | Hyde et al. | Sep 2015 | A1 |
20150261320 | Leto | Sep 2015 | A1 |
20150268027 | Gerdes | Sep 2015 | A1 |
20150268799 | Starner et al. | Sep 2015 | A1 |
20150276925 | Scholten et al. | Oct 2015 | A1 |
20150277569 | Sprenger et al. | Oct 2015 | A1 |
20150280102 | Tajitsu et al. | Oct 2015 | A1 |
20150285906 | Hooper et al. | Oct 2015 | A1 |
20150287187 | Redtel | Oct 2015 | A1 |
20150301167 | Sentelle et al. | Oct 2015 | A1 |
20150312041 | Choi | Oct 2015 | A1 |
20150314780 | Stenneth et al. | Nov 2015 | A1 |
20150317518 | Fujimaki et al. | Nov 2015 | A1 |
20150323993 | Levesque et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150341550 | Lay | Nov 2015 | A1 |
20150346701 | Gordon et al. | Dec 2015 | A1 |
20150346820 | Poupyrev et al. | Dec 2015 | A1 |
20150350902 | Baxley et al. | Dec 2015 | A1 |
20150351703 | Phillips et al. | Dec 2015 | A1 |
20150370250 | Bachrach et al. | Dec 2015 | A1 |
20150375339 | Sterling et al. | Dec 2015 | A1 |
20160011668 | Gilad-Bachrach et al. | Jan 2016 | A1 |
20160018948 | Parvarandeh et al. | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160038083 | Ding et al. | Feb 2016 | A1 |
20160041617 | Poupyrev | Feb 2016 | A1 |
20160041618 | Poupyrev | Feb 2016 | A1 |
20160042169 | Polehn | Feb 2016 | A1 |
20160045706 | Gary et al. | Feb 2016 | A1 |
20160048235 | Poupyrev | Feb 2016 | A1 |
20160048236 | Poupyrev | Feb 2016 | A1 |
20160048672 | Lux et al. | Feb 2016 | A1 |
20160054792 | Poupyrev | Feb 2016 | A1 |
20160054803 | Poupyrev | Feb 2016 | A1 |
20160054804 | Gollakata | Feb 2016 | A1 |
20160055201 | Poupyrev et al. | Feb 2016 | A1 |
20160075015 | Izhikevich et al. | Mar 2016 | A1 |
20160075016 | Laurent et al. | Mar 2016 | A1 |
20160077202 | Hirvonen et al. | Mar 2016 | A1 |
20160085296 | Mo et al. | Mar 2016 | A1 |
20160089042 | Saponas et al. | Mar 2016 | A1 |
20160090839 | Stolarczyk | Mar 2016 | A1 |
20160096270 | Ibarz Gabardos et al. | Apr 2016 | A1 |
20160098089 | Poupyrev | Apr 2016 | A1 |
20160100166 | Dragne et al. | Apr 2016 | A1 |
20160103500 | Hussey et al. | Apr 2016 | A1 |
20160106328 | Mestha et al. | Apr 2016 | A1 |
20160124579 | Tokutake | May 2016 | A1 |
20160131741 | Park | May 2016 | A1 |
20160140872 | Palmer et al. | May 2016 | A1 |
20160145776 | Roh | May 2016 | A1 |
20160146931 | Rao et al. | May 2016 | A1 |
20160170491 | Jung | Jun 2016 | A1 |
20160171293 | Li et al. | Jun 2016 | A1 |
20160186366 | McMaster | Jun 2016 | A1 |
20160206244 | Rogers | Jul 2016 | A1 |
20160213331 | Gil et al. | Jul 2016 | A1 |
20160216825 | Forutanpour | Jul 2016 | A1 |
20160220152 | Meriheina et al. | Aug 2016 | A1 |
20160234365 | Alameh et al. | Aug 2016 | A1 |
20160238696 | Hintz | Aug 2016 | A1 |
20160249698 | Berzowska et al. | Sep 2016 | A1 |
20160252607 | Saboo et al. | Sep 2016 | A1 |
20160252965 | Mandella et al. | Sep 2016 | A1 |
20160253044 | Katz | Sep 2016 | A1 |
20160259037 | Molchanov | Sep 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160282988 | Poupyrev | Sep 2016 | A1 |
20160283101 | Schwesig et al. | Sep 2016 | A1 |
20160284436 | Fukuhara et al. | Sep 2016 | A1 |
20160287172 | Morris et al. | Oct 2016 | A1 |
20160291143 | Cao et al. | Oct 2016 | A1 |
20160299526 | Inagaki et al. | Oct 2016 | A1 |
20160320852 | Poupyrev | Nov 2016 | A1 |
20160320853 | Lien et al. | Nov 2016 | A1 |
20160320854 | Lien et al. | Nov 2016 | A1 |
20160321428 | Rogers | Nov 2016 | A1 |
20160338599 | DeBusschere et al. | Nov 2016 | A1 |
20160345638 | Robinson et al. | Dec 2016 | A1 |
20160349790 | Connor | Dec 2016 | A1 |
20160349845 | Poupyrev et al. | Dec 2016 | A1 |
20160377712 | Wu et al. | Dec 2016 | A1 |
20170029985 | Tajitsu et al. | Feb 2017 | A1 |
20170052618 | Lee et al. | Feb 2017 | A1 |
20170060254 | Molchanov et al. | Mar 2017 | A1 |
20170060298 | Hwang et al. | Mar 2017 | A1 |
20170075481 | Chou et al. | Mar 2017 | A1 |
20170075496 | Rosenberg et al. | Mar 2017 | A1 |
20170097413 | Gillian et al. | Apr 2017 | A1 |
20170097684 | Lien | Apr 2017 | A1 |
20170115777 | Poupyrev | Apr 2017 | A1 |
20170124407 | Micks et al. | May 2017 | A1 |
20170125940 | Karagozler et al. | May 2017 | A1 |
20170131395 | Reynolds | May 2017 | A1 |
20170168630 | Khoshkava et al. | Jun 2017 | A1 |
20170192523 | Poupyrev | Jul 2017 | A1 |
20170192629 | Takada et al. | Jul 2017 | A1 |
20170196513 | Longinotti-Buitoni et al. | Jul 2017 | A1 |
20170224280 | Bozkurt et al. | Aug 2017 | A1 |
20170231089 | Van Keymeulen | Aug 2017 | A1 |
20170232538 | Robinson et al. | Aug 2017 | A1 |
20170233903 | Jeon | Aug 2017 | A1 |
20170249033 | Podhajny et al. | Aug 2017 | A1 |
20170258366 | Tupin et al. | Sep 2017 | A1 |
20170291301 | Gabardos et al. | Oct 2017 | A1 |
20170322633 | Shen et al. | Nov 2017 | A1 |
20170325337 | Karagozler et al. | Nov 2017 | A1 |
20170325518 | Poupyrev et al. | Nov 2017 | A1 |
20170329412 | Schwesig et al. | Nov 2017 | A1 |
20170329425 | Karagozler et al. | Nov 2017 | A1 |
20170356992 | Scholten et al. | Dec 2017 | A1 |
20180000354 | DeBusschere et al. | Jan 2018 | A1 |
20180000355 | DeBusschere et al. | Jan 2018 | A1 |
20180004301 | Poupyrev | Jan 2018 | A1 |
20180005766 | Fairbanks et al. | Jan 2018 | A1 |
20180046258 | Poupyrev | Feb 2018 | A1 |
20180095541 | Gribetz et al. | Apr 2018 | A1 |
20180106897 | Shouldice et al. | Apr 2018 | A1 |
20180113032 | Dickey et al. | Apr 2018 | A1 |
20180157330 | Gu et al. | Jun 2018 | A1 |
20180160943 | Fyfe et al. | Jun 2018 | A1 |
20180177464 | DeBusschere et al. | Jun 2018 | A1 |
20180196527 | Poupyrev et al. | Jul 2018 | A1 |
20180256106 | Rogers et al. | Sep 2018 | A1 |
20180296163 | DeBusschere et al. | Oct 2018 | A1 |
20180321841 | Lapp | Nov 2018 | A1 |
20190030713 | Gabardos et al. | Jan 2019 | A1 |
20190033981 | Poupyrev | Jan 2019 | A1 |
20190138109 | Poupyrev et al. | May 2019 | A1 |
20190155396 | Lien et al. | May 2019 | A1 |
20190208837 | Poupyrev et al. | Jul 2019 | A1 |
20190232156 | Amihood et al. | Aug 2019 | A1 |
20190243464 | Lien et al. | Aug 2019 | A1 |
20190257939 | Schwesig et al. | Aug 2019 | A1 |
20190278379 | Gribetz et al. | Sep 2019 | A1 |
20190321719 | Gillian et al. | Oct 2019 | A1 |
20190391667 | Poupyrev | Dec 2019 | A1 |
20190394884 | Karagozler et al. | Dec 2019 | A1 |
20200064471 | Gatland et al. | Feb 2020 | A1 |
20200064924 | Poupyrev et al. | Feb 2020 | A1 |
20200089314 | Poupyrev et al. | Mar 2020 | A1 |
20200150776 | Poupyrev et al. | May 2020 | A1 |
20200218361 | Poupyrev | Jul 2020 | A1 |
20200229515 | Poupyrev et al. | Jul 2020 | A1 |
20200278422 | Lien et al. | Sep 2020 | A1 |
20200326708 | Wang et al. | Oct 2020 | A1 |
20200393912 | Lien et al. | Dec 2020 | A1 |
20210096653 | Amihood et al. | Apr 2021 | A1 |
20210132702 | Poupyrev | May 2021 | A1 |
20210326642 | Gillian et al. | Oct 2021 | A1 |
20210365124 | Gillian et al. | Nov 2021 | A1 |
20220019291 | Lien et al. | Jan 2022 | A1 |
20220043519 | Poupyrev et al. | Feb 2022 | A1 |
20220058188 | Poupyrev et al. | Feb 2022 | A1 |
20220066567 | Lien et al. | Mar 2022 | A1 |
20220066568 | Lien et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
1299501 | Jun 2001 | CN |
1462382 | Dec 2003 | CN |
1862601 | Nov 2006 | CN |
101349943 | Jan 2009 | CN |
101636711 | Jan 2010 | CN |
101751126 | Jun 2010 | CN |
101910781 | Dec 2010 | CN |
102031615 | Apr 2011 | CN |
102160471 | Aug 2011 | CN |
102184020 | Sep 2011 | CN |
102414641 | Apr 2012 | CN |
102473032 | May 2012 | CN |
102782612 | Nov 2012 | CN |
102819315 | Dec 2012 | CN |
102893327 | Jan 2013 | CN |
106342197 | Feb 2013 | CN |
202887794 | Apr 2013 | CN |
103076911 | May 2013 | CN |
103091667 | May 2013 | CN |
103502911 | Jan 2014 | CN |
103534664 | Jan 2014 | CN |
102660988 | Mar 2014 | CN |
103675868 | Mar 2014 | CN |
103907405 | Jul 2014 | CN |
104035552 | Sep 2014 | CN |
104094194 | Oct 2014 | CN |
104115118 | Oct 2014 | CN |
104838336 | Aug 2015 | CN |
103355860 | Jan 2016 | CN |
106154270 | Nov 2016 | CN |
102011075725 | Nov 2012 | DE |
102013201359 | Jul 2014 | DE |
0161895 | Nov 1985 | EP |
1785744 | May 2007 | EP |
1815788 | Aug 2007 | EP |
2417908 | Feb 2012 | EP |
2637081 | Sep 2013 | EP |
2770408 | Aug 2014 | EP |
2014165476 | Oct 2014 | EP |
2953007 | Dec 2015 | EP |
2923642 | Mar 2017 | EP |
3201726 | Aug 2017 | EP |
3017722 | Aug 2015 | FR |
2070469 | Sep 1981 | GB |
2443208 | Apr 2008 | GB |
113860 | Apr 1999 | JP |
11168268 | Jun 1999 | JP |
H11168268 | Jun 1999 | JP |
2003500759 | Jan 2003 | JP |
2003280049 | Oct 2003 | JP |
2006163886 | Jun 2006 | JP |
2006234716 | Sep 2006 | JP |
2007011873 | Jan 2007 | JP |
2007132768 | May 2007 | JP |
2007266772 | Oct 2007 | JP |
2008287714 | Nov 2008 | JP |
2008293501 | Dec 2008 | JP |
2009037434 | Feb 2009 | JP |
2010048583 | Mar 2010 | JP |
2010049583 | Mar 2010 | JP |
2011003202 | Jan 2011 | JP |
2011086114 | Apr 2011 | JP |
2011102457 | May 2011 | JP |
2012068854 | Apr 2012 | JP |
201218583 | Sep 2012 | JP |
2012185833 | Sep 2012 | JP |
2012198916 | Oct 2012 | JP |
2012208714 | Oct 2012 | JP |
2013016060 | Jan 2013 | JP |
2013037674 | Feb 2013 | JP |
2013196047 | Sep 2013 | JP |
2013251913 | Dec 2013 | JP |
2014503873 | Feb 2014 | JP |
2014532332 | Dec 2014 | JP |
2015507263 | Mar 2015 | JP |
2015509634 | Mar 2015 | JP |
2021085256 | Jun 2021 | JP |
1020080102516 | Nov 2008 | KR |
100987650 | Oct 2010 | KR |
20130137005 | Dec 2013 | KR |
1020130137005 | Dec 2013 | KR |
20140027837 | Mar 2014 | KR |
1020140055985 | May 2014 | KR |
20140138779 | Dec 2014 | KR |
20150002718 | Jan 2015 | KR |
101999712 | Jan 2017 | KR |
101914850 | Oct 2018 | KR |
201425974 | Jul 2014 | TW |
9001895 | Mar 1990 | WO |
0130123 | Apr 2001 | WO |
2001027855 | Apr 2001 | WO |
0175778 | Oct 2001 | WO |
2002082999 | Oct 2002 | WO |
2004004557 | Jan 2004 | WO |
2004053601 | Jun 2004 | WO |
2005033387 | Apr 2005 | WO |
2005103863 | Nov 2005 | WO |
2007125298 | Nov 2007 | WO |
2008061385 | May 2008 | WO |
2009032073 | Mar 2009 | WO |
2009083467 | Jul 2009 | WO |
2009148064 | Dec 2009 | WO |
2010032173 | Mar 2010 | WO |
2010101697 | Sep 2010 | WO |
2012026013 | Mar 2012 | WO |
2012064847 | May 2012 | WO |
2012152476 | Nov 2012 | WO |
2013082806 | Jun 2013 | WO |
2013084108 | Jun 2013 | WO |
2013137412 | Sep 2013 | WO |
2013154864 | Oct 2013 | WO |
2013186696 | Dec 2013 | WO |
2013191657 | Dec 2013 | WO |
2013192166 | Dec 2013 | WO |
2014019085 | Feb 2014 | WO |
2014032984 | Mar 2014 | WO |
2014085369 | Jun 2014 | WO |
2014116968 | Jul 2014 | WO |
2014124520 | Aug 2014 | WO |
2014136027 | Sep 2014 | WO |
2014138280 | Sep 2014 | WO |
2014160893 | Oct 2014 | WO |
2014165476 | Oct 2014 | WO |
2014204323 | Dec 2014 | WO |
2015017931 | Feb 2015 | WO |
2015018675 | Feb 2015 | WO |
2015022671 | Feb 2015 | WO |
2015149049 | Oct 2015 | WO |
2016053624 | Apr 2016 | WO |
2016118534 | Jul 2016 | WO |
2016154560 | Sep 2016 | WO |
2016154568 | Sep 2016 | WO |
2016176471 | Nov 2016 | WO |
2016176600 | Nov 2016 | WO |
2016176606 | Nov 2016 | WO |
2016178797 | Nov 2016 | WO |
2017019299 | Feb 2017 | WO |
2017062566 | Apr 2017 | WO |
2017079484 | May 2017 | WO |
2017200570 | Nov 2017 | WO |
2017200571 | Nov 2017 | WO |
20170200949 | Nov 2017 | WO |
2018106306 | Jun 2018 | WO |
Entry |
---|
“Non-Final Office Action”, U.S. Appl. No. 16/875,427, dated Oct. 5, 2021, 37 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/689,519, dated Sep. 30, 2021, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/148,374, dated Oct. 14, 2021, 8 pages. |
“Advisory Action”, U.S. Appl. No. 16/689,519, dated Jun. 30, 2021, 2 pages. |
“Foreign Notice of Allowance”, KR Application No. 10-2021-7009474, dated Sep. 2, 2021, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/843,813, dated Jun. 30, 2021, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/563,124, dated Jul. 8, 2021, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/005,207, dated Jul. 14, 2021, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/822,601, dated Aug. 5, 2021, 9 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 6, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Jan. 28, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/744,626, dated Feb. 3, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/669,842, dated Feb. 18, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Dec. 18, 2020, 2 pages. |
“Final Office Action”, U.S. Appl. No. 16/503,234, dated Dec. 30, 2020, 14 pages. |
“Foreign Office Action”, EP Application No. 16725269.1, dated Feb. 9, 2021, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/822,601, dated Mar. 15, 2021, 17 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/744,626, filed Jan. 1, 2021, 10 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/669,842, filed Dec. 18, 2020, 8 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Sep. 30, 2020, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 15, 2020, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Dec. 14, 2020, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/744,626, dated Sep. 23, 2020, 9 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/689,519, dated Oct. 20, 2020, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Oct. 28, 2020, 19 pages. |
“Notice of Allowability”, U.S. Appl. No. 16/560,085, dated Nov. 12, 2020, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Sep. 15, 2020, 7 Pages. |
“Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Oct. 19, 2020, 8 pages. |
“Advisory Action”, U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages. |
“Apple Watch Used Four Sensors to Detect your Pulse”, retrieved from http://www.theverge.com/2014/9/9/6126991 / apple-watch-four-back-sensors-detect-activity on Sep. 23, 2017 as cited in PCT search report for PCT Application No. PCT/US2016/026756 dated Nov. 10, 2017; The Verge, paragraph 1, Sep. 9, 2014, 4 pages. |
“Cardiio”, Retrieved From: <http://www.cardiio.com/> Apr. 15, 2015 App Information Retrieved From: <https://itunes.apple.com/us/app/cardiio-touchless-camera-pulse/id542891434?ls=1&mt=8> Apr. 15, 2015, Feb. 24, 2015, 6 pages. |
“Clever Toilet Checks on Your Health”, CNN.Com; Technology, Jun. 28, 2005, 2 pages. |
“Combined Search and Examination Report”, GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages. |
“Combined Search and Examination Report”, GB Application No. 1620891.0, dated May 31, 2017, 9 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated May 11, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages. |
“EP Appeal Decision”, European Application No. 10194359.5, May 28, 2019, 20 pages. |
“European Search Report”, European Application No. 16789735.4, dated Nov. 14, 2018, 4 pages. |
“Extended European Search Report”, European Application No. 19164113.3, dated Jun. 13, 2019, 11 pages. |
“Extended European Search Report”, EP Application No. 15170577.9, dated Nov. 5, 2015, 12 pages. |
“Extended European Search Report”, European Application No. 19158625.4, dated May 8, 2019, 16 pages. |
“Final Office Action”, U.S. Appl. No. 15/462,957, dated Nov. 8, 2019, 10 Pages. |
“Final Office Action”, U.S. Appl. No. 14/504,061, dated Mar. 9, 2016, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/681,625, dated Dec. 7, 2016, 10 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 2, 2019, 10 pages. |
“Final Office Action”, U.S. Appl. No. 15/398,147, dated Jun. 30, 2017, 11 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,155, dated Apr. 10, 2019, 11 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jul. 19, 2017, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/731,195, dated Oct. 11, 2018, 12 pages. |
“Final Office Action”, U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Sep. 7, 2017, 14 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,512, dated Dec. 26, 2018, 15 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages. |
“Final Office Action”, U.S. Appl. No. 16/238,464, dated Jul. 25, 2019, 15 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,359, dated Feb. 19, 2020, 16 Pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages. |
“Final Office Action”, U.S. Appl. No. 14/720,632, dated Jan. 9, 2018, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated May 5, 2017, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated May 30, 2019, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/093,533, dated Mar 21, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Apr. 17, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,537, dated Apr. 19, 2019, 21 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/596,702, dated Jun. 13, 2019, 21 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,308, dated Feb. 8, 2019, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/599,954, dated Aug. 10, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,038, dated Sep. 27, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,471, dated Jun. 20, 2019, 26 pages. |
“Final Office Action”, U.S. Appl. No. 15/596,702, 27 Pages. |
“Final Office Action”, U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages. |
“Final Office Action”, U.S. Appl. No. 15/267,181, dated Jun. 7, 2018, 31 pages. |
“Final Office Action”, U.S. Appl. No. 14/312,486, dated Jun. 3, 2016, 32 pages. |
“Final Office Action”, U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,394, dated Sep. 30, 2019, 38 Pages. |
“Final Office Action”, U.S. Appl. No. 14/699,181, dated May 4, 2018, 41 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,793, dated Sep. 12, 2017, 7 pages. |
“Final Office Action”, U.S. Appl. No. 14/809,901, dated Dec. 13, 2018, 7 pages. |
“Final Office Action”, Korean Application No. 102016-7036023, dated Feb. 19, 2018, 8 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages. |
“First Action Interview OA”, U.S. Appl. No. 14/715,793, dated Jun. 21, 2017, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/142,471, dated Feb. 5, 2019, 29 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/731,195, dated Jun. 21, 2018, 4 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/917,238, dated Jun. 6, 2019, 6 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages. |
“First Action Interview Pilot Program Pre-Interview Communication”, U.S. Appl. No. 14/731,195, dated Aug. 1, 2017, 3 pages. |
“First Exam Report”, EP Application No. 15754352.1, dated Mar. 5, 2018, 7 pages. |
“First Examination Report”, GB Application No. 1621332.4, dated May 16, 2017, 7 pages. |
“Foreign Office Action”, Chinese Application No. 201580034536.8, dated Oct. 9, 2018. |
“Foreign Office Action”, Korean Application No. 1020187029464, dated Oct. 30, 2018, 1 page. |
“Foreign Office Action”, KR Application No. 10-2016-7036023, dated Aug. 11, 2017, 10 pages. |
“Foreign Office Action”, CN Application No. 201680020123.9, dated Nov. 29, 2019, 10 pages. |
“Foreign Office Action”, Chinese Application No. 201580034908.7, dated Feb. 19, 2019, 10 pages. |
“Foreign Office Action”, Chinese Application No. 201611191179.9, dated Aug. 28, 2019, 10 pages. |
“Foreign Office Action”, Chinese Application No. 201710922856.8, dated Jun. 19, 2020, 11 pages. |
“Foreign Office Action”, Japanese Application No. 2018-501256, dated Jul. 24, 2018, 11 pages. |
“Foreign Office Action”, Japanese Application No. 2019-078554, dated Jul. 21, 2020, 12 pages. |
“Foreign Office Action”, Chinese Application No. 201580036075.8, dated Jul. 4, 2018, 14 page. |
“Foreign Office Action”, European Application No. 16725269.1, dated Nov. 26, 2018, 14 pages. |
“Foreign Office Action”, Chinese Application No. 201680021212.5, dated Sep. 3, 2019, 14 pages. |
“Foreign Office Action”, JP Application No. 2016-563979, dated Sep. 21, 2017, 15 pages. |
“Foreign Office Action”, Japanese Application No. 1020187027694, dated Nov. 23, 2018, 15 pages. |
“Foreign Office Action”, Chinese Application No. 201611159870.9, dated Dec. 17, 2019, 15 pages. |
“Foreign Office Action”, European Application No. 16725269.1, dated Mar. 24, 2020, 15 pages. |
“Foreign Office Action”, CN Application No. 201580034908.7, dated Jul. 3, 2018, 17 pages. |
“Foreign Office Action”, Chinese Application No. 201510300495.4, dated Jun. 21, 2018, 18 pages. |
“Foreign Office Action”, Chinese Application No. 201680020567.2, dated Sep. 26, 2019, 19 pages. |
“Foreign Office Action”, Korean Application No. 1020197004803, dated Oct. 14, 2019, 2 pages. |
“Foreign Office Action”, Korean Application No. 1020197004803, dated Dec. 6, 2019, 2 pages. |
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Mar. 9, 2018, 2 pages. |
“Foreign Office Action”, Chinese Application No. 201611159602.7, dated Oct. 11, 2019, 20 pages. |
“Foreign Office Action”, Chinese Application No. 201580035246.5, dated Jan. 31, 2019, 22 pages. |
“Foreign Office Action”, Chinese Application No. 201680021213.X, dated Oct. 28, 2019, 26 pages. |
“Foreign Office Action”, Chinese Application No. 201680038897.4, dated Jun. 29, 2020, 28 pages. |
“Foreign Office Action”, Japanese Application No. 2018156138, dated May 22, 2019, 3 pages. |
“Foreign Office Action”, JP App. No. 2016-567813, dated Jan. 16, 2018, 3 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036015, dated Oct. 15, 2018, 3 pages. |
“Foreign Office Action”, British Application No. 1621332.4, dated Nov. 6, 2019, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2018501256, dated Feb. 26, 2019, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2018156138, dated Apr. 22, 2020, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2016-567839, dated Apr. 3, 2018, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2018-021296, dated Apr. 9, 2019, 3 pages. |
“Foreign Office Action”, European Application No. 16784352.3, dated May 16, 2018, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2016-563979, dated May 21 2018, 3 pages. |
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2018156138, dated Sep. 30, 2019, 3 pages. |
“Foreign Office Action”, European Application No. 15170577.9, dated Dec. 21, 2018, 31 pages. |
“Foreign Office Action”, Japanese Application No. 2016-575564, dated Jan. 10, 2019, 4 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036023, dated Apr. 12, 2018, 4 pages. |
“Foreign Office Action”, Japanese Application No. 2016-575564, dated Jul. 10, 2018, 4 pages. |
“Foreign Office Action”, British Application No. 1621192.2, dated Jun. 17, 2020, 5 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7035397, dated Sep. 20, 2017, 5 pages. |
“Foreign Office Action”, Japanese Application No. 2018169008, dated Jan. 14, 2020, 5 pages. |
“Foreign Office Action”, Japanese Application No. 2018501256, dated Oct. 23, 2019, 5 pages. |
“Foreign Office Action”, Korean Application No. 10-2017-7027877, dated Nov. 23, 2018, 5 pages. |
“Foreign Office Action”, Japanese Application No. 2017-541972, dated Nov. 27, 2018, 5 pages. |
“Foreign Office Action”, European Application No. 15754352.1, dated Nov. 7, 2018, 5 pages. |
“Foreign Office Action”, European Application No. 16789735.4, dated Dec. 12, 2018, 5 pages. |
“Foreign Office Action”, Japanese Application No. 2016-575564, dated Dec. 5, 2017, 5 pages. |
“Foreign Office Action”, UK Application No. 1620891.0, dated Dec. 6, 2018, 5 pages. |
“Foreign Office Action”, Chinese Application No. 201580036075.8, dated Feb. 19, 2019, 5 pages. |
“Foreign Office Action”, Japanese Application No. 2016-563979, dated Feb. 7, 2018, 5 pages. |
“Foreign Office Action”, British Application No. 1912334.8, dated Sep. 23, 2019, 5 pages. |
“Foreign Office Action”, Korean Application No. 1020197019768, dated Sep. 30, 2019, 6 pages. |
“Foreign Office Action”, Korean Application No. 10-2017-7027871, dated Nov. 23, 2018, 6 pages. |
“Foreign Office Action”, Chinese Application No 201510300495.4, dated Apr. 10, 2019, 6 pages. |
“Foreign Office Action”, Korean Application No. 1020197004803, dated Apr. 26, 2019, 6 pages. |
“Foreign Office Action”, Korean Application No. 1020187012629, dated May 24, 2018, 6 pages. |
“Foreign Office Action”, EP Application No. 15170577.9, dated May 30, 2017, 7 pages. |
“Foreign Office Action”, Korean Application No. 1020197023675, dated Jul. 13, 2020, 7 pages. |
“Foreign Office Action”, KR Application No. 2019-7020454, dated Aug. 26, 2020, 7 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036396, dated Jan. 3, 2018, 7 pages. |
“Foreign Office Action”, European Application No. 16716351.8, dated Mar. 15, 2019, 7 pages. |
“Foreign Office Action”, JP Application No. 2016567813, dated Sep. 22, 2017, 8 pages. |
“Foreign Office Action”, Korean Application No. 1020187004283, dated Jan. 3, 2020, 8 pages. |
“Foreign Office Action”, Japanese Application No. 2018021296, dated Dec. 25, 2018, 8 pages. |
“Foreign Office Action”, EP Application No. 15754323.2, dated Mar. 9, 2018, 8 pages. |
“Foreign Office Action”, European Application No. 16724775.8, dated Nov. 23, 2018, 9 pages. |
“Foreign Office Action”, KR Application No. Oct. 2016-7032967, English Translation, dated Sep. 14, 2017, 4 pages. |
“Frogpad Introduces Wearable Fabric Keyboard with Bluetooth Technology”, Retrieved From: <http://www.geekzone.co.nz/content.asp?contentid=3898> Mar. 16, 2015, Jan. 7, 2005, 2 pages. |
“Galaxy S4 Air Gesture”, Galaxy S4 Guides, retrieved from: https://allaboutgalaxys4.com/galaxy-s4-features-explained/air-gesture/ on Sep. 3, 2019, 4 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/051663, dated Jun. 20, 2019, 10 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/063874, dated Nov. 29, 2018, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/026756, dated Oct. 19, 2017, 8 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages. |
“International Search Report and Written Opinion”, PCT Application No. PCT/US2016/065295, dated Mar. 14, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/044774, dated Nov. 3, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/042013, dated Oct. 26, 2016, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages. |
“International Search Report and Written Opinion”, PCT/US2017/047691, dated Nov. 16, 2017, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024267, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024273, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/032307, dated Aug. 25, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/034366, dated Nov. 17, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/029820, dated Jul. 15, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030177, dated Aug. 2, 2016, 15 pages. |
“International Search Report and Written Opinion”, PCT Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043963, dated Nov. 24, 2015, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043949, dated Dec. 1, 2015, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/050903, dated Feb. 19, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030115, dated Aug. 8, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/033342, dated Oct. 27, 2016, 20 pages. |
“Life:X Lifestyle eXplorer”, Retrieved from <https://web.archive.org/web/20150318093841/http://research.microsoft.com/en-us/projects/lifex >, Feb. 3, 2017, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Jan. 4, 2019, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/153,395, dated Oct. 22, 2019, 10 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,837, dated Oct. 26, 2018, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,155, dated Dec. 10, 2018, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Feb. 3, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/424,263, dated May 23, 2019, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/669,842, dated Sep. 3, 2020, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/252,477, dated Jan. 10, 2020, 13 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/809,901, dated May 24, 2018, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/462,957, dated May 24, 2019, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/930,220, dated Sep. 14, 2016, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/238,464, dated Mar. 7, 2019, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,512, dated Jul. 19, 2018, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated Jun. 14, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Sep. 8, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/715,454, dated Jan. 11, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Jan. 26, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Dec. 14, 2017, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Feb. 2, 2016, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Aug. 5, 2020, 18 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Jun. 26, 2020, 19 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Sep. 7, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated May 18, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Oct. 21, 2019, 21 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/704,825, dated Jun. 1, 2020, 22 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/791,044, dated Sep. 30, 2019, 22 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Feb. 26, 2016, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/312,486, dated Oct. 23, 2015, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Sep. 3, 2019, 28 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/704,615, dated Jun. 1, 2020, 29 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/699,181, dated Oct. 18, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,394, dated Mar. 22, 2019, 39 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/166,198, dated Feb. 21, 2019, 48 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Mar. 6, 2017, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,061, dated Nov. 4, 2015, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/582,896, dated Jun. 29, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Aug. 12, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Aug. 24, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages. |
“Non-Invasive Quantification of Peripheral Arterial Volume Distensibilitiy and its Non-Lineaer Relationship with Arterial Pressure”, Journal of Biomechanics, Pergamon Press, vol. 42, No. 8; as cited in the search report for PCT/US2016/013968 citing the whole document, but in particular the abstract, May 29, 2009, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/238,464, dated Nov. 4, 2019, 10 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/424,263, dated Nov. 14, 2019, 10 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,394, dated Mar. 4, 2020, 11 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated May 24, 2017, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/153,395, dated Feb. 20, 2020, 13 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/917,238, dated Aug. 21, 2019, 13 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,253, dated Aug. 26, 2019, 13 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,512, dated Apr. 9, 2019, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/401,611, dated Jun. 10, 2020, 17 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,308, dated Jul. 17, 2019, 17 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,200, dated Nov. 6, 2018, 19 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,152, dated Mar. 5, 2019, 23 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Feb. 11, 2020, 5 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Jul. 6, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/093,533, dated Jul. 16, 2020, 5 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,495, dated Jan. 17, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Jan. 3, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Dec. 18, 2017, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Feb. 20, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/703,511, dated Apr. 16, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Jul. 10, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/389,402, dated Aug. 21, 2019, 7 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 20, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Sep. 12, 2016, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Jun. 7, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,837, dated Mar. 6, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/731,195, dated Apr. 24, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/862,409, dated Jun. 6, 2018, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,155, dated Jul. 25, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/462,957, dated Jan. 23, 2020, 8 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/791,044, dated Feb. 12, 2020, 8 Pages. |
“Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Jun. 24, 2020, 8 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Oct. 23, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,829, dated Feb. 6, 2019, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/352,194, dated Jun. 26, 2019, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Oct. 17, 2019, 9 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,137, dated Feb. 6, 2019, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated Mar. 15, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages. |
“Philips Vital Signs Camera”, Retrieved From: <http://www.vitalsignscamera.com/> Apr. 15, 2015, Jul. 17, 2013, 2 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 16/380,245, dated Jun. 15, 2020, 3 Pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/142,471, Dec. 12, 2018, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,793, dated Mar. 20, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,454, dated Apr. 14, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 16/401,611, dated Apr. 13, 2020, 4 Pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/362,359, dated May 17, 2018, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/703,511, dated Feb. 11, 2019, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/917,238, dated May 1, 2019, 6 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages. |
“Pre-Interview First Office Action”, U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/731,195, dated Dec. 20, 2017, 4 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/034366, dated Dec. 7, 2017, 10 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030177, dated Oct. 31, 2017, 11 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030115, dated Oct. 31, 2017, 15 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030185, dated Nov. 9, 2017, 16 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/065295, dated Jul. 24, 2018, 18 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/042013, dated Jan. 30, 2018, 7 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/062082, dated Nov. 15, 2018, 8 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/032307, dated Dec. 7, 2017, 9 pages. |
“Pressure-Volume Loop Analysis in Cardiology”, retrieved from https://en.wikipedia.org/w/index.php?t itle=Pressure-volume loop analysis in card iology&oldid=636928657 on Sep. 23, 2017; Obtained per link provided in search report from PCT/US2016/01398 dated Jul. 28, 2016, Dec. 6, 2014, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/976,518, dated Jul. 9, 2020, 5 Pages. |
“Restriction Requirement”, U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/666,155, dated Jul. 22, 2016, 5 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/462,957, dated Jan. 4, 2019, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/352,194, dated Feb. 6, 2019, 8 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages. |
“Samsung Galaxy S4 Air Gestures”, Video retrieved from https://www.youtube.com/watch?v=375Hb87yGcg, May 7, 2013, 4 pages. |
“Textile Wire Brochure”, Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages. |
“The Dash smart earbuds play back music, and monitor your workout”, Retrieved from < http://newatlas.com/bragi-dash-tracking-earbuds/30808/>, Feb. 13, 2014, 3 pages. |
“The Instant Blood Pressure app estimates blood pressure with your smartphone and our algorithm”, Retrieved at: http://www.instantbloodpressure.com/—on Jun. 23, 2016, 6 pages. |
“Thermofocus No Touch Forehead Thermometer”, Technimed, Internet Archive. Dec. 24, 2014. https://web.archive.org/web/20141224070848/http://www.tecnimed.it:80/thermofocus-forehead-thermometer-H1N1-swine-flu.html, Dec. 24, 2018, 4 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/030185, dated Nov. 3, 2016, 15 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 24, 2017, 5 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/042013, dated Feb. 2, 2017, 6 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/060399, dated May 11, 2017, 6 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/026756, dated Nov. 10, 2016, 7 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/065295, dated Apr. 13, 2018, 8 pages. |
“Written Opinion”, PCT Application PCT/US2016/013968, dated Jul. 28, 2016, 9 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/030177, dated Nov. 3, 2016, 9 pages. |
Amihood, Patrick M. et al., “Closed-Loop Manufacturing System Using Radar”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/464, Apr. 17, 2017, 8 pages. |
Antonimuthu, “Google's Project Soli brings Gesture Control to Wearables using Radar”, YouTube[online], Available from https://www.youtube.com/watch?v=czJfcgvQcNA as accessed on May 9, 2017; See whole video, especially 6:05-6:35. |
Arbabian, Amin et al., “A 94GHz mm-Wave to Baseband Pulsed-Radar for Imaging and Gesture Recognition”, 2012 IEEE, 2012 Symposium on VLSI Circuits Digest of Technical Papers, Jan. 1, 2012, 2 pages. |
Azevedo, Stephen et al., “Micropower Impulse Radar”, Science & Technology Review, Feb.29 1996, pp. 16-29, Feb. 29, 1996, 7 pages. |
Balakrishnan, Guha et al., “Detecting Pulse from Head Motions in Video”, In Proceedings: CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Available at: <http://people.csail.mit.edu/mrub/vidmag/papers/Balakrishnan_Detecting_Pulse_from_ 2013_ CVPR_paper.pdf>, Jun. 23, 2013, 8 pages. |
Bondade, Rajdeep et al., “A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages. |
Cheng, Jingyuan “Smart Textiles: From Niche to Mainstream”, IEEE Pervasive Computing, pp. 81-84. |
Couderc, Jean-Philippe et al., “Detection of Atrial Fibrillation using Contactless Facial Video Monitoring”, In Proceedings: Heart Rhythm Society, vol. 12, Issue 1 Available at: <http://www.heartrhythmjournal.com/article/S1547-5271(14)00924-2/pdf>, 7 pages. |
Dias, T et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 5, No. 5, Oct. 1, 2005 (Oct. 1, 2005), pp. 989-994, XP011138559, ISSN: 1530-437X, DOI: 10.1109/JSEN.2005.844327, Oct. 1, 2005, 5 pages. |
Duncan, David P. “Motion Compensation of Synthetic Aperture Radar”, Microwave Earth Remote Sensing Laboratory, Brigham Young University, Apr. 15, 2003, 5 pages. |
Espina, Javier et al., “Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring”, International Summer School on Medical Devices and Biosensors, 2006, 5 pages. |
Fan, Tenglong et al., “Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors”, IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, Nov. 1, 2016 (Nov. 1, 2016), pp. 4012-4012, XP011633246, ISSN: 00189480, DOI: 10.1109/TMTT.2016.2610427, Nov. 1, 2016, 9 pages. |
Farringdon, Jonny et al., “Wearable Sensor Badge & Sensor Jacket for Context Awareness”, Third International Symposium on Wearable Computers, 7 pages. |
Garmatyuk, Dmitriy S. et al., “Ultra-Wideband Continuous-Wave Random Noise Arc-SAR”, IEEE Transaction on Geoscience and Remote Sensing, vol. 40, No. 12, Dec. 2002, Dec. 2002, 10 pages. |
Geisheimer, Jonathan L. et al., “A Continuous-Wave (CW) Radar for Gait Analysis”, IEEE 2001, 2001, 5 pages. |
Godana, Bruhtesfa E. “Human Movement Characterization in Indoor Environment using GNU Radio Based Radar”, Retrieved at: http://repository.tudelft.nl/islandora/object/uuid:414e1868-dd00-4113-9989-4c213f1f7094?collection=education, Nov. 30, 2009, 100 pages. |
Gürbüz, Sevgi Z. et al., “Detection and Identification of Human Targets in Radar Data”, Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages. |
He, David D. “A Continuous, Wearable, and Wireless Heart Monitor Using Head Ballistocardiogram (BCG) and Head Electrocardiogram (ECG) with a Nanowatt ECG Heartbeat Detection Circuit”, In Proceedings: Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Available at: <http://dspace.mitedu/handle/1721.1/79221>, 137 pages. |
Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction, Jan. 1, 2008, 10 pages. |
Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction With Mobile Devices and Services, Jan. 1, 2008 (Jan. 1, 2008), p. 81, XP055223937, New York, NY, US DOI: 10.1145/1409240.1409250 ISBN: 978-1-59593-952-4, Jan. 1, 2008, 11 pages. |
Ishijima, Masa “Unobtrusive Approaches to Monitoring Vital Signs at Home”, Medical & Biological Engineering and Computing, Springer, Berlin, DE, vol. 45, No. 11 as cited in search report for PCT/US2016/013968 dated Jul. 28, 2016, Sep. 26, 2007, 3 pages. |
Karagozler, Mustafa E. et al., “Embedding Radars in Robots to Accurately Measure Motion”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/454, Mar. 30, 2017, 8 pages. |
Klabunde, Richard E. “Ventricular Pressure-Volume Loop Changes in Valve Disease”, Retrieved From https://web.archive.org/web/20101201185256/http://cvphysiology.com/Heart%20Disease/HD009.htm>, Dec. 1, 2010, 8 pages. |
Kubota, Yusuke et al., “A Gesture Recognition Approach by using Microwave Doppler Sensors”, IPSJ SIG Technical Report, 2009 (6), Information Processing Society of Japan, Apr. 15, 2010, pp. 1-8, Apr. 15, 2010, 12 pages. |
Lee, Cullen E. “Computing the Apparent Centroid of Radar Targets”, Sandia National Laboratories; Presented at the Proceedings of the 1996 IEEE National Radar Conference: Held at the University of Michigan; May 13-16, 1996; retrieved from https://www.osti.gov/scitech/servlets/purl/218705 on Sep. 24, 2017, 21 pages. |
Lien, Jaime et al., “Embedding Radars in Robots for Safety and Obstacle Detection”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/455, Apr. 2, 2017, 10 pages. |
Lien, Jaime et al., “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar”, ACM Transactions on Graphics (TOG), ACM, Us, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016), pp. 1-19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages. |
Martinez-Garcia, Hermino et al., “Four-quadrant linear-assisted DC/DC voltage regulator”, Analog Integrated Circuits and Signal Processing, Springer New York LLC, US, vol. 88, No. 1, Apr. 23, 2016 (Apr. 23, 2016)pp. 151-160, XP035898949, ISSN: 0925-1030, DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages. |
Matthews, Robert J. “Venous Pulse”, Retrieved at: http://www.rjmatthewsmd.com/Definitions/venous_pulse.htm—on Nov. 30, 2016, Apr. 13, 2013, 7 pages. |
Nakajima, Kazuki et al., “Development of Real-Time Image Sequence Analysis for Evaluating Posture Change and Respiratory Rate of a Subject in Bed”, In Proceedings: Physiological Measurement, vol. 22, No. 3 Retrieved From: <http://iopscience.iop.org/0967-3334/22/3/401/pdf/0967-3334_22_3_401.pdf> Feb. 27, 2015, 8 pages. |
Narasimhan, Shar “Combining Self- & Mutual-Capacitive Sensing for Distinct User Advantages”, Retrieved from the Internet: URL:http://www.designnews.com/author.asp?section_id=1365&doc_id=271356&print=yes [retrieved on Oct. 1, 2015], Jan. 31, 2014, 5 pages. |
Otto, Chris et al., “System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring”, Journal of Mobile Multimedia; vol. 1, No. 4, Jan. 10, 2006, 20 pages. |
Palese, et al., “The Effects of Earphones and Music on the Temperature Measured by Infrared Tympanic Thermometer: Preliminary Results”, ORL—head and neck nursing: official journal of the Society of Otorhinolaryngology and Head-Neck Nurses 32.2, Jan. 1, 2013, pp. 8-12. |
Patel, P C. et al., “Applications of Electrically Conductive Yarns in Technical Textiles”, International Conference on Power System Technology (POWECON), Oct. 30, 2012, 6 pages. |
Poh, Ming-Zher et al., “A Medical Mirror for Non-contact Health Monitoring”, In Proceedings: ACM SIGGRAPH Emerging Technologies Available at: <http://affect.media.mit.edu/pdfs/11.Poh-etal-SIGGRAPH.pdf>, Jan. 1, 2011, 1 page. |
Poh, Ming-Zher et al., “Non-contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation.”, In Proceedings: Optics Express, vol. 18, No. 10 Available at: <http://www.opticsinfobase.org/view_article.cfm?gotourl=http%3A%2F%2Fwww%2Eopticsinfobase%2Eorg%2FDirectPDFAccess%2F77B04D55%2DBC95%2D6937%2D5BAC49A426378C02%5F199381%2Foe%2D18%2D10%2D10762%2Ep , May 7, 2010, 13 pages. |
Pu, Qifan et al., “Gesture Recognition Using Wireless Signals”, pp. 15-18. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, Sep. 2013, 12 pages. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, 2013, 12 pages. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom'13), US, ACM, Sep. 30, 2013, pp. 27-38, Sep. 30, 2013, 12 pages. |
Pu, Quifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom '13 Proceedings of the 19th annual international conference on Mobile computing & networking, Aug. 27, 2013, 12 pages. |
Schneegass, Stefan et al., “Towards a Garment OS: Supporting Application Development for Smart Garments”, Wearable Computers, ACM, Sep. 13, 2014, 6 pages. |
Skolnik, Merrill I. “CW and Frequency-Modulated Radar”, In: “Introduction to Radar Systems”, Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages. |
Stoppa, Matteo “Wearable Electronics and Smart Textiles: A Critical Review”, In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992. |
Wang, Wenjin et al., “Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG”, In Proceedings: IEEE Transactions on Biomedical Engineering, vol. 62, Issue 2, Jan. 19, 2015, 11 pages. |
Wang, Yazhou et al., “Micro-Doppler Signatures for Intelligent Human Gait Recognition Using a UWB Impulse Radar”, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 3, 2011, pp. 2103-2106. |
Wijesiriwardana, R et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, Oct. 1, 2005, 5 pages. |
Zhadobov, Maxim et al., “Millimeter-Wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, p. 1 of 11. # Cambridge University Press and the European Microwave Association, 2011 doi:10.1017/S1759078711000122, 2011. |
Zhadobov, Maxim et al., “Millimeter-wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, Mar. 11, 2011, 11 pages. |
Zhang,Ruquan et al., “Study of the Structural Design and Capacitance Characteristics of Fabric Sensor”, Advanced Materials Research (vols. 194-196), Feb. 21, 2011, 8 pages. |
Zheng, Chuan et al., “Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition”, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, Dec. 9, 2013 (Dec. 9, 2013), p. 3, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages. |
“Final Office Action”, U.S. Appl. No. 16/689,519, dated Apr. 29, 2021, 13 pages. |
“Foreign Office Action”, KR Application No. 10-2021-7007454, dated Apr. 29, 2021, 11 pages. |
“Foreign Office Action”, KR Application No. 10-2021-7009474, dated May 10, 2021, 5 pages. |
“Foreign Office Action”, EP Application No. 16724775.8, dated May 27, 2021, 6 pages. |
“Foreign Office Acton”, EP Application No. 21156948.8, dated May 21, 2021, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/843,813, dated Mar. 18, 2021, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Mar. 18, 2021, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/005,207, dated Apr. 1, 2021, 23 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,359, dated Apr. 14, 2021, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,121, dated Jun. 1, 2021, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/503,234, dated Jun. 11, 2021, 8 pages. |
“Patent Board Decision”, U.S. Appl. No. 14/504,121, dated May 20, 20201, 9 pages. |
“Restriction Requirement”, U.S. Appl. No. 16/563,124, dated Apr. 5, 2021, 7 pages. |
“Foreign Office Action”, KR Application No. 10-2021-7037016, dated Dec. 23, 2021, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/875,427, dated Feb. 22, 2022, 13 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/361,824, dated Jun. 9, 2022, 9 pages. |
“Summons to Attend Oral Proceedings”, EP Application No. 16724775.8, Mar. 17, 2022, 10 pages. |
Fogle, et al., “Micro-Range/Micro-Doppler Decomposition of Human Radar Signatures”, Oct. 2012, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/506,605, dated Jul. 27, 2022, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/119,312, dated Sep. 2, 2022, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/500,747, dated Nov. 10, 2022, 32 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/523,051, dated Nov. 10, 2022, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/488,015, dated Nov. 10, 2022, 47 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/119,312, dated Jan. 13, 2023, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/506,605, dated Oct. 19, 2022, 5 pages. |
“Foreign Office Action”, CN Application No. 202010090233.0, dated Mar. 31, 2023, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/517,978, dated Apr. 24, 2023, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/523,051, dated Feb. 28, 2023, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/488,015, dated Mar. 1, 2023, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/500,747, dated Mar. 1, 2023, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20200409472 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62167823 | May 2015 | US | |
62155357 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16252477 | Jan 2019 | US |
Child | 17023122 | US | |
Parent | 15142689 | Apr 2016 | US |
Child | 16252477 | US |