This application is a U.S. National Stage Application of International Application No. PCT/EP2010/065595 filed Oct. 18, 2010, which designates the United States of America, and claims priority to DE Patent Application No. 10 2009 053 624.8 filed Nov. 17, 2009. The contents of which are hereby incorporated by reference in their entirety.
The disclosure relates to an RF cavity into which RF power can be coupled in order to generate an electromagnetic field inside the RF cavity. The disclosure also relates to an accelerator comprising such an RF cavity. Such accelerators, or such RF cavities, are conventionally used for accelerating charged particles.
RF cavities are known which can be excited into RF resonance by coupling RF power into the RF cavity. The RF power itself, however, is generated at a distance from the RF cavity, for example with the aid of a klystron, and transported to the RF cavity with the aid of a waveguide. As an alternative, it is possible to couple the RF power into the cavity with the aid of an antenna or an inductive coupler.
U.S. Pat. No. 5,497,050 discloses a different structure for coupling RF power into an RF cavity. This is done using a multiplicity of solid-state power transistors, which are integrated in a conductive wall of the RF cavity.
In one embodiment, an RF cavity comprises: a chamber, a conductive wall which encloses the chamber and has an inner side and an outer side, and a switch arrangement comprising a multiplicity of solid-state switches, which are arranged along a circumference of the wall around the chamber, the solid-state switches being connected to the conductive wall so that RF currents are induced in the conductive wall when the switch arrangement is activated, as a result of which RF power is coupled into the chamber of the RF cavity, wherein on the outer side of the conductive wall, along a circumference of the RF cavity, there is a shielding device which increases the impedance of a propagation path of RF currents along the outer side of the wall so that the RF currents coupled into the wall are suppressed on the outer side of the wall.
In a further embodiment, the conductive wall comprises a first section and a second section insulated from the first section, and the shielding device comprises a first part and a second part, the first part being arranged on the first section of the conductive wall and the second part being arranged on the second section of the conductive wall. In a further embodiment, the insulation between the first section and the second section of the conductive wall is a vacuum seal.
In a further embodiment, the shielding device comprises a ribbed conductive structure. In a further embodiment, the shielding device comprises a ferrite ring. In a further embodiment, the shielding device comprises a λ/4 spur line. In a further embodiment, at least a part of the shielding device is sunk into a recess on the outer side of the conductive wall. In a further embodiment, a λ/4 spur line is formed by the recess in the conductive wall. In a further embodiment, the recess is filled with a dielectric. In a further embodiment, the λ/4 spur line is folded.
In a further embodiment, the solid-state switches are enclosed by a protective cage which is connected to the outer side of the conductive wall at one point, so that the shielding device lies between the point and the position where the RF currents are coupled into the wall by the solid-state switches. In a further embodiment, at least a part of the shielding device is applied on the outer side of the conductive wall. In a further embodiment, the shielding device is formed by a conductive protective cage, which encloses the solid-state switches and the inner side of which is ribbed. In a further embodiment, the RF cavity is formed as a coaxial electrical line. In a further embodiment, the RF cavity is formed as an RF resonator, in particular for accelerating particles.
In another embodiment, an accelerator comprises a plurality of RF cavities as disclosed herein, wherein the plurality of RF cavities can be controlled independently of one another.
Example embodiments will be explained in more detail below with reference to figures, in which:
Some embodiments provide an RF cavity which can be operated reliably and which can be used safely together with other equipment. Other embodiments provide an accelerator comprising such an RF cavity, which allows flexible driving.
In some embodiments, an RF cavity comprises:
Certain embodiments are based on the discovery that an accelerator structure, e.g., as disclosed in U.S. Pat. No. 5,497,050, is advantageous for coupling RF powers into an RF cavity. The area through which the RF power can be coupled in is greater in comparison with structures comprising input coupling merely at one point, since the transistors extend over the entire circumference. Furthermore, the RF power to be coupled in is generated in the immediate vicinity of the RF cavity, so that losses are avoided.
It has, however, furthermore been found that this structure can be problematic. In particular, the RF power which is coupled into the wall of the RF cavity generates strong RF currents on the outer side of the conductive wall. These RF currents constitute a problem during operation when there is a high power demand.
Owing to the fact that a shielding device is now provided, by which the impedance on the outer side of the conductive wall is increased, the RF currents which would otherwise propagate along a propagation path on the outer wall are significantly reduced, and in the best case are even entirely suppressed. The effect of the impedance increase on the outer side of the conductive wall is that the RF currents which are induced through the direct connection of the solid-state switches with the conductive wall propagate predominantly or entirely on the inner side of the conductive wall.
A number of advantages may be achieved as a result of this. The fact that no RF currents propagate on the outer side of the wall, and on an optionally provided protective cage around the transistors, avoids emission of electromagnetic radiation outward from the wall which would otherwise reduce the availability of the power and, for example, would interfere with operation owing to interruption of radiofrequency bands.
The outer side of the conductive wall can now be set at ground potential, so that the RF cavity can more easily be connected or coupled to other equipment and used together therewith. An outer side of the conductive wall at ground potential increases safety during operation.
The conductive wall usually comprises a first section and a second section insulated from the first section. The shielding device comprises a first part and a second part, the first part being assigned to the first section of the conductive wall and the second part being assigned to the second section of the conductive wall. The switch arrangement comprising the solid-state transistors supplies the RF power through a slot between the first section and the second section of the conductive wall. The insulation between the first section and the second section of the conductive wall may simultaneously fulfill the function of a vacuum seal.
The shielding device may achieve the impedance increase in a variety of ways. For instance, the shielding device may comprise a ribbed conductive structure, a ferrite ring and/or a λ/4 spur line.
Advantageously, the conductive wall may comprise a recess on the outer side, into which the shielding device is at least partially sunk.
In particular, a λ/4 spur line may be formed by the recess in the conductive wall. In this way, no additional material is required in order to achieve the impedance increase. Filling the recess with a dielectric makes it possible to match the spur line to the frequency of the RF currents. The spur line can be arranged compactly when the spur line is folded on itself, for example in the manner of a spiral.
The solid-state switches may additionally be enclosed by a conductive protective cage which is connected to the outer side of the conductive wall. This makes it possible to shield the solid-state switches against electromagnetic radiation. The point where the protective cage is connected to the conductive wall may be selected so that the shielding device lies between this point and the position where the RF currents are coupled into the conductive wall by the solid-state switches. In this way, the part of the conductive wall where RF currents can flow on the outer side lies inside the protective cage.
The shielding device need not necessarily be arranged in a recess of the conductive wall. It may also be applied entirely or partially on the outer side of the conductive wall.
The shielding device may also be formed by the conductive protective cage, which encloses the solid-state switches and is connected to the conductive wall. The protective cage is connected to both the first section and the second section of the conductive wall. Without ribs for increasing impedance on the inner side of the protective cage, in the absence of further measures such as a further shielding device of the protective cage, the protective cage would constitute a short circuit between the first section and the second section of the conductive wall. By virtue of the ribs, however, an impedance increase is achieved in the RF range, which prevents this. Furthermore, suppression of the RF currents on the outer side of the wall is achieved by the conductive protective cage, since propagation of the RF currents on the outer side of the conductive wall is prevented by the points of contact of the protective cage with the conductive wall.
The RF cavity may be formed as an RF resonator, which may be used in particular for accelerating particles. In particular, a plurality of such RF resonators may be connected in series and, in particular, driven independently of one another.
Owing to the fact that no RF currents flow on the outer side of the RF cavity, a plurality of these RF cavities can be connected in series to form an accelerator unit. Despite being coupled to one another, the RF cavities are then decoupled from one another in the radiofrequency range. The coupling relates merely to a direct-current component (DC component). Owing to the RF decoupling, moreover, it is then possible to drive the individual RF cavities independently of one another, so that the accelerator can be operated more flexibly and adapted more flexibly to the respectively desired acceleration to be achieved. The adaptation is more flexible than for an accelerator in which the RF cavities are coupled to one another in the RF range, so that controlling one RF cavity simultaneously influences the RF fields in the neighboring RF cavity.
In some embodiments, the structure for the input coupling of RF power and for shielding from the external environment may, however, also be used in other RF cavities; for example, the RF cavity may be formed as a coaxial electrical line or arranged in a re-entrant resonator structure.
The input coupling device 13 will be presented in more detail with the aid of the longitudinal section in
In addition, the solid-state transistors 29 and the input coupling point at the flange 25 are externally protected against electromagnetic radiation by a metallic protective cage 35, for example consisting of copper. The protective cage 35 makes contact with the electrically conductive wall 15 at a point on the outer side 17 which is already protected against propagating RF currents by the shielding device.
In
Number | Date | Country | Kind |
---|---|---|---|
10 2009 053 624 | Nov 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/065595 | 10/18/2010 | WO | 00 | 5/16/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/061026 | 5/26/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2563585 | Dallenbach | Aug 1951 | A |
2860313 | Israel | Nov 1958 | A |
3495125 | Koontz | Feb 1970 | A |
5497050 | Cheo | Mar 1996 | A |
5661366 | Hirota et al. | Aug 1997 | A |
5917293 | Saito et al. | Jun 1999 | A |
6724261 | Cheo | Apr 2004 | B2 |
7710051 | Caporaso et al. | May 2010 | B2 |
8232747 | Crewson et al. | Jul 2012 | B2 |
8325463 | Peterson | Dec 2012 | B2 |
20090224700 | Chen et al. | Sep 2009 | A1 |
20100049152 | Lalomia et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1582529 | Feb 2005 | CN |
1739053 | Feb 1957 | DE |
0711101 | May 1996 | EP |
9208391 | Aug 1997 | JP |
2005019508 | Jan 2005 | JP |
4268799 | May 2009 | JP |
Entry |
---|
Examination Report, German Patent Application No. 10 2009 053 624.8-54, 5 pages, Aug. 10, 2010. |
International PCT Search Report and Written Opinion, PCT/EP2010/065595, 12 pages, Apr. 14, 2011. |
Number | Date | Country | |
---|---|---|---|
20120229054 A1 | Sep 2012 | US |