In testing microwave devices with coaxial connectors, it is desirable to provide a connection which can be made quickly while providing low VSWR (Voltage Standing Wave Ratio), high isolation, and most importantly, repeatable measurements, ideally exhibiting repeatability greater than 40 dB. It is also desirable that the connection be stable and not require any external fixturing to insure repeatability, but may require support when used on a cable or test device which would normally require support during test.
Various quick disconnect coaxial connectors are described in U.S. Pat. Nos. 4,846,714; 4,891,015; 4,941,846; and 5,401,175. All of the above employ relatively complex and expensive methods for achieving a quick connect/disconnect feature for coaxial connectors.
A microwave quick connect/disconnect coaxial connector is described in U.S. Pat. No. 6,210,221 B1, by Marc A Maury.
Features and advantages of the disclosure will readily be appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawing wherein:
In the following detailed description and in the several figures of the drawing, like elements are identified with like reference numerals. The figures may not be to scale, and relative feature sizes may be exaggerated for illustrative purposes.
Two exemplary embodiments of a new male coaxial connector are described, both using a solid (i.e. continuous) coaxial transmission line outer conductor surface and an outer slotted finger structure. One embodiment uses a slotted shield ring covering a region of the slots in the finger structure and located in a recess area behind the contacting surfaces of the outer slotted finger structure, and a second embodiment does not use a shield ring.
One unique feature is the coaxial transmission line outer conductor of this coaxial connector is not slotted, and includes a continuous outer surface in combination with the outer slotted finger structure, thereby maintaining the physical integrity of the outer conductor and eliminating RF discontinuity and leakage path for the RF connector. This is sometimes referred to herein as a “solid” outer coaxial conductor structure, referring to the outer coaxial conductor surface, but it will be understood that the outer coaxial structure is hollow, defining an interior region, into which the inner conductive coaxial structure is fitted, and the open region between the inner and outer coaxial structures is typically filled with a dielectric material, such as air or Teflon™. The compression fingers in conjunction with the shield ring can also provide RF shielding capabilities. The compression fingers exert outward axial forces against mating components of the female connector as well as lineal directional pressure to exert force at the interface plane of the connectors and ensure good contact. An exemplary embodiment of the male connector can be mated to a corresponding female connector and connected and disconnected using a simple push on/pull off motion without the need for other action.
The male connector may be used with an optional integral coupling nut to provide the option of a threaded coupling when performing calibration, or when verification of the measurement is desired. When used, the coupling nut provides engagement of one to two threads in one embodiment, providing the ability to quickly thread or unthread the mating connectors, or allowing a torqueable mating using industry standard torque wrenches.
Exemplary embodiments of a multi-function connector can be used to measure devices that utilize various types or sizes of female connectors, e.g., 2.4 mm female connectors. The female connector of these series connectors conventionally mate with a male connector that is screwed on and typically requires five to six revolutions of the coupling nut to mate.
The simplicity and ease of use of the connectors, plus the relatively low cost to manufacture, provides the user a low cost alternative to the more complex and costly methods currently available today.
Similar connectors can be provided using this coupling technique in connector types such as 1.0, 1.85, 2.92 and 3.5 mm and other sexed connectors with similar constructions.
An exemplary embodiment of a male connector 10 is illustrated in
A slotted shield ring 20 is fitted over finger regions 15 of the compression finger structure 12, and is configured such that, when compressed, exerts circumferential pressure to the walls of the outer coaxial conductor receptacle 52B in the female connector 50, adding additional retention force to the compression finger regions 15 and resulting in electrically repeatable mating. This embodiment yields a quick disconnect configuration that provides excellent electrical specifications, and with the use of heat treated beryllium copper, phosphor bronze or other suitable conductive material for all conductive parts, also provides long life and reliable test characteristics.
Another embodiment of a male connector 10A is illustrated in
The connector structures 10 and 10A include a solid uninterrupted coaxial outer conductor surface, with a compression finger structure 12 or 12′ around the circumference of the outer conductor 16, and having a plurality of slots 14 (
In an exemplary embodiment, the slots 14 and finger regions 15, 15′ have a suitable length to be spread to provide adequate axial retention force when compressed into the outer conductor receptacle 52B of a female connector 50.
The configuration of the leading edge 17 of the coaxial outer conductor 16 is flat or convex, ensuring intimate contact is made at the interface plane 32 exactly at the contact point of the coaxial outer conductors 16 of both the male 10 and 10A connector embodiments and the coaxial outer conductor defined by structure 52 and mating leading edge 52C of female connector 50 (
The leading edges 15A of the compression fingers 15 are radiused at 15B with a smooth finish to provide a smooth wiping action when inserting into the receptacle of the mating female connector; in an alternate embodiment they can also be grooved to provide additional retention force, or a combination of the two.
The face 15A of the compression fingers 15 is recessed behind the face 17 of the coaxial outer conductor 16 and at the mating plane 32 to ensure there is always intimate contact between the mating surfaces 17, 52C of the outer conductors 16, 52 of both connectors 10 or 10A and 50 at the mating plane 32.
The configuration of the leading end 16 features a flat end surface 17 to rest against a corresponding flat end surface 52C of the female connector, thus minimizing any discontinuity at these mating surfaces of the respective connector structures.
A split compression ring 20 encircles the compression finger structure 15 at region 12A, and is designed to exert force on the inner surface 52B (
The finger regions 15 are spread to provide a compression fit with the inner circumferential surface of the female connector. The outer diameter of the outer structure 12 at the radiused end of the outer conductor structure 12 is machined to a diameter of 0.1886 inch+/−0.0005 inch, in an exemplary embodiment, and the finger regions are then spread and heat treated with the diameter set at 0.1946 inch+/−0.001 inch. The inner diameter of the corresponding female outer connector structure at its leading end for this embodiment is 0.1878 inch+/−0.001 inch, and so the outer diameter of the outer structure at the leading end is slightly oversized with respect to the female connector structure. When engaged with the female connector structure, the inner surface of the female connector structure forces the spread finger regions 15 together and returns the ID of outer conductor structure 12 at the slotted finger regions to the nominal OD of the coaxial outer conductor sleeve 16. The radiused leading end surfaces of the finger regions facilitate the engagement with the female connector structure.
A minimal air gap 12E separates the inner surfaces of the finger region 15 of compression finger structure 12 and the outer surface of the coaxial line outer conductor 16. This allows the finger regions 15 to flex beyond a nominal ID and takes into account tolerance variations contributed by the mating parts 10, 10A and 50.
A threaded coupling nut 22 with reduced thread engagement is held in place by a retaining ring 24. The coupling nut 22 is fabricated with an inner area between shoulders 22A, 22B of increased diameter, forming an elongated relief area 25. This relief area allows the coupling nut 22 to retract towards the rear of the connector 10 to ensure that the threads on the coupling nut do not contact the threads 52A on the female connector 52 (
The connector structure 10 or 10A further includes an inner conductor pin 26 with a leading end pin region 27 of reduced diameter with respect to that of the pin 26. The leading end pin region 27 has a length of 0.054 inch in this exemplary embodiment. In this exemplary embodiment, the reduced length of pin region 27 allows the entry of the outer conductor 12 into the female connector outer conductor structure 52 (
The connector structure 10 in an exemplary test application is intended to be used, and will provide optimum results, where the device-under-test (DUT) is supported and where the device fixed with the connector structure 10 is also reasonably supported.
This configuration of an outside slotted finger structure 12 with compression fingers 15 used with a solid (continuous) coaxial outer conductor 16 can be applied to a variety of connector types having reasonably thick outer walls (of structure 12) which will allow a recess to be provided where the compression ring can reside, and expanded to provide a spring compression fit with a mating female connector. If the wall is too thin to allow a compression ring, the connector 10A may be used.
Microwave connectors and test adapters employing this connector can be inexpensively produced and quickly connected and disconnected from a microwave coupling while maintaining a highly repeatable and low VSWR junction. Another aspect of this invention is a connector that can either be used in the push on/pull off mode or in the threaded mode as desired by the user.
Although the foregoing has been a description and illustration of specific embodiments of the subject matter, various modifications and changes thereto can be made by persons skilled in the art without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3292136 | Somerset | Dec 1966 | A |
3340495 | Weinschel | Sep 1967 | A |
3601776 | Curl | Aug 1971 | A |
4561716 | Acke | Dec 1985 | A |
4846714 | Welsby et al. | Jul 1989 | A |
4891015 | Oldfield | Jan 1990 | A |
4929188 | Lionetto et al. | May 1990 | A |
4941846 | Guimond et al. | Jul 1990 | A |
5401175 | Guimond et al. | Mar 1995 | A |
5435745 | Booth | Jul 1995 | A |
5879188 | Clyatt | Mar 1999 | A |
5938465 | Fox, Sr. | Aug 1999 | A |
6174206 | Yentile et al. | Jan 2001 | B1 |
6210221 | Maury | Apr 2001 | B1 |
6396367 | Rosenberger | May 2002 | B1 |
7347727 | Wlos et al. | Mar 2008 | B2 |
Entry |
---|
Mario A. Maury, Jr., Microwave Coaxial Connector Technology: A Continuing Evolution; 2005. |