The subject matter herein relates generally to RF connectors for RF modules.
Due to their favorable electrical characteristics, coaxial cables and connectors have grown in popularity for interconnecting electronic devices and peripheral systems. Typically, one connector is mounted to a circuit board of an electronic device at an input/output port of the device and extends through an exterior housing of the device for connection with a coaxial cable connector. Each connector include an inner conductor coaxially disposed within an outer conductor, with a dielectric material separating the inner and outer conductors.
A typical application utilizing coaxial cable connectors is a radio-frequency (RF) application having RF connectors designed to work at radio frequencies in the UHF and/or VHF range. RF connectors are typically used with coaxial cables and are designed to maintain the shielding that the coaxial design offers. RF connectors are typically designed to minimize the change in transmission line impedance at the connection by utilizing contacts that have a short contact length. The connectors have a short mating distance and, particularly when using multiple connectors in a single insert, typically include a pre-compressed spring to ensure the connectors are pushed forward and the contacts are engaged.
Known RF connectors having springs are not without disadvantages. For instance, assembly of the connectors in the housing may be difficult. For example, the spring is typically retained by a washer and the spring is loaded onto the shell in the contact cavity and then assembled using the washer to hold the spring on the shell. However, improper loading of the spring or washer may lead to loss of one or more of the components, such as when the spring forces the washer off the end of the connector, leading to loss of the washer and/or the spring or injury to the assembler, such as when the washer is ejected toward the assembler's eye. Furthermore, disassembly and removal of the connector may be difficult, such as when one or more of the connectors needs to be replaced.
A need remains for an RF module that may be assembled in a cost effective, safe and reliable manner.
In one embodiment, an RF module is provided including a housing having walls defining connector cavities. The walls include a rear wall having a plurality of openings therethrough. The rear wall has lands adjacent the openings. The connector cavities are open opposite the rear wall to receive electrical connectors. The RF module includes RF connectors received in the connector cavities. The RF connectors are terminated to corresponding cables. Each RF connector has a conductive shell, a center contact and a dielectric body positioning the center contact in the shell. The shell has a front flange and a rear flange. The RF connector has a spring surrounding the shell between the front flange and the rear flange. The RF connector has a rear retainer at the rear flange having a front rim. The RF connector is received in the corresponding opening such that the front flange is located forward of the rear wall in the connector cavity and the rear flange is located rearward of the rear wall. The RF connector is received in the corresponding opening such that the front rim of the rear retainer engages the rear wall to retain the RF connector in the corresponding opening. The RF connector is spring loaded in the connector cavity to allow the RF connector to float in the connector cavity.
In another embodiment, an RF connector is provided including a shell extending between a mating end and a cable end. The shell has a front shell and a rear shell. The front shell has a front flange and the rear shell has a rear flange. The shell has a shell cavity. The rear shell is configured to be terminated to a coaxial cable. The front shell is configured to be mated with an electrical connector. The RF connector includes a center contact received in the shell cavity terminated to the coaxial cable and having a mating end configured to be mated with the electrical connector. The RF connector includes a dielectric body received in the shell cavity holding the center contact. The RF connector includes a spring surrounding the shell and positioned between the front flange and the rear flange and spring loaded in a connector cavity of a housing to allow the RF connector to float in the connector cavity. The RF connector includes a rear retainer coupled to the rear shell proximate to the rear flange. The rear retainer is axially movable relative to the rear flange. The rear retainer is rotatably fixed relative to the rear flange. The rear retainer has a front rim. The spring is spring biased against the front rim. The front flange is configured to be received in the connector cavity of the housing such that the front rim engages a rear wall of the housing to axially position the rear retainer relative to the housing.
In a further embodiment, an RF module is provided including a housing having cavity walls defining connector cavities and a rear wall at a rear of the connector cavities. The rear wall has a plurality of openings therethrough open to corresponding connector cavities. The rear wall has lands adjacent the openings. The connector cavities are open opposite the rear wall to receive electrical connectors in corresponding connector cavities. The RF module includes RF connectors received in the connector cavities. The RF connectors are terminated to corresponding cables. Each RF connector has a conductive shell, a center contact and a dielectric body positioning the center contact in the shell. The shell has a front flange and a rear flange. The front flange has outer edges facing the side walls and configured to engage the side walls to center the RF connector in the corresponding connector cavity for mating with the corresponding electrical connector. The RF connector has a spring surrounding the shell between the front flange and the rear flange. The RF connector has a rear retainer at the rear flange. The rear retainer has a front rim. The RF connector is received in the corresponding opening such that the front rim of the rear flange engages the rear wall to retain the RF connector in the corresponding opening. The RF connector is spring loaded in the connector cavity to allow the RF connector to float in the connector cavity.
In another embodiment, an RF module is provided including a housing having walls defining connector cavities extending between a mating end and a rear wall having a plurality of openings therethrough. The connector cavities are open at the mating end to receive electrical connectors. The RF module includes RF connectors received in the connector cavities being terminated to corresponding cables. Each RF connector has a conductive shell, a center contact and a dielectric body positioning the center contact in the shell. The shell has a front flange and a rear flange and a spring surrounding the shell between the front flange and the rear flange. The RF connector has a rear retainer forward of the rear flange being secured to the rear wall. The RF connector is received in the corresponding opening such that the front flange is located forward of the rear wall in the connector cavity and the rear flange is located rearward of the rear wall. The front flange has a plurality of projections extending to an outer edge of the front flange facing the walls of the housing defining the corresponding connector cavity to prevent significant lateral movement of the RF connector in the connector cavity. The RF connector is spring loaded in the connector cavity to allow the RF connector to axially float in the connector cavity.
The electrical connector assembly 14 includes a housing 20 and a plurality of electrical connectors 22 held within the housing 20. Any number of electrical connectors 22 may be utilized depending on the particular application. In the illustrated embodiment, seven electrical connectors 22 are provided in two rows. In the illustrated embodiment, the electrical connectors 22 are cable mounted to respective coaxial cables 24. Alternatively, the electrical connectors 22 may be terminated to the motherboard 16. The electrical connectors 22 may be terminated to the motherboard 16 with the motherboard 16 oriented parallel to the mating face as shown in
In an exemplary embodiment, the RF module 12 defines a plug that may be received within the mating cavity 26. The RF module 12 includes a housing 30 and a plurality of RF connectors 32 held within the housing 30. The RF connectors 32 are cable mounted to respective coaxial cables. The RF module 12 and electrical connector assembly 14 are mated with one another such that the electrical connectors 22 mate with the RF connectors 32. In alternative embodiments, the RF module 12 and electrical connector assembly 14 are both board mounted, or alternatively, one of the RF module 12 and electrical connector assembly 14 are cable mounted, while the other is board mounted.
The shell 100 is generally cylindrical in shape and may be stepped along the length having portions of different diameters. The mating end 104 defines a plug may be tapered or stepped such that a shell at the mating end 104 is smaller than along other portions of the shell 100. The shell 100 includes a tines 120 at the mating end 104 configured to be received within the electrical connector 22 (shown in
The spring 114 has a helically wound body 124 extending between a front end 126 and a rear end 128. The rear end 128 faces the rear retainer 160. The spring 114 is compressible axially. In an exemplary embodiment, the shell 100 is a multi-piece shell and the spring 114 may be loaded between the pieces. For example, the shell 100 includes a front shell 130 and a rear shell 132. A nose 134 of the rear shell 132 is received in a hood 136 of the front shell 130. The front shell 130 may be secured to the rear shell 132, such as by a press-fit and/or crimping and/or soldering. The dielectric body 112 is held within the shell cavity 108 defined by the front shell 130 and/or the rear shell 132.
The front shell 130 includes a front flange 140 and the rear shell 132 includes a rear flange 142. The front flange 140 includes an outer edge 144 having a diameter greater than other adjacent portions of the front shell 130. The outer edge 144 may extend around the entire perimeter of the front flange 140. Alternatively, the front flange 140 may include a plurality of projections at the outer edge 144, where the projections extend further radially outward to define the outer edge 144. In an exemplary embodiment, the outer edge 144 may have a diameter approximately equal to the diameter of the connector cavities that receive the RF connectors 32 to center the RF connectors 32 in the connector cavities for mating with the electrical connectors 22 (shown in
The contact 110 is held within the shell cavity 108 by the dielectric body 112. The contact 110 includes a mating end 150 and a terminating end 152. The mating end 150 is configured to mate with a center contact 154 (shown in
In an exemplary embodiment, the rear retainer 160 includes extensions 172 at the rear of the rear retainer 160. The extensions 172 are spaced apart along the outer perimeter of the rear retainer 160. In the illustrated embodiment, three extensions 172 are provided spaced equidistant apart. Greater or fewer extensions 172 may be provided in alternative embodiments. In another alternative embodiment, rather than having individual extensions, the rear retainer may extend entirely circumferentially around the opening 164 at the rear. The extensions 172 define the rear rim 168. In an exemplary embodiment, the extensions 172 include channels 174 at the rear. The channels 174 are configured to receive a removal tool for removing the RF connector 32 from the housing 30.
In an exemplary embodiment, the rear retainer 160 includes a keyway 176 for keyed mating with the shell 100. In the illustrated embodiment, the keyway 176 extends along the retainer body 162 and along one of the extensions 172. The keyway 176 extends axially. Optionally, multiple keyways 176 may be provided in alternative embodiments.
In an exemplary embodiment, the rear retainer 160 includes one or more lobes 180 at the front of the rear retainer 160. The lobes 180 may be provided at the front rim 166. The lobes 180 are bumps or protrusions that increase the width or diameter of the rear retainer 160 at the lobes 180. Any number of lobes 180 may be provided in various embodiments. In the illustrated embodiment, three lobes 180 are provided spaced equidistant around the perimeter of the front rim 166. In the illustrated embodiment, the lobes 180 are curved having varying thickness being thinner at the ends of the lobes 180 and thicker at the middle of the lobes 180. Other shapes are possible in alternative embodiments. The lobes 180 are used for mating with the housing 30, such as described in further detail below.
In an exemplary embodiment, the rear wall 204 includes an interior surface 212 defining the opening 210. The rear wall 204 includes cutouts 214 and lands 216 adjacent the cutouts 214. The cutouts 214 are sized and shaped to receive corresponding lobes 180 of the RF connector 32 to allow the RF connector 32 pass through the opening 210. The RF connector 32 is configured to be rotated within the opening 210 to offset the lobes 180 from the cutouts 214. The RF connector 32 is rotated to align the lobes 180 with the lands 216 to secure the RF connector 32 in the connector cavity 200. Optionally, the lands 216 may include detents 218 (shown in phantom) that receive the lobes 180. The detents 218 provide an interference fit with the lobes 180 to resist inadvertent rotation of the RF connector 32.
The rear wall 204 includes a plurality of the openings 210 therethrough that provide access to the connector cavities 200. The RF connectors 32 extend through the openings 210 into the connector cavities 200. In an exemplary embodiment, a portion of the shell 100 is positioned outside of the housing 30 (e.g. rearward or behind the rear wall 204), and a portion of the shell 100 is positioned inside the connector cavity 200. The rear wall 204 includes first and second sides 222, 224, with the first side 222 facing rearward and outside of the housing 30 and the second side 224 facing forward and into the connector cavity 200. In an exemplary embodiment, the RF connector 32 is received in the connector cavity 200 such that the rear flange 142 faces and/or engages the first side 222 of the rear wall 204. The rear flange 142 defines a stop against the rear wall 204 that limits forward movement of the RF connector 32 relative to the housing 30. In an exemplary embodiment, the rear retainer 160 is coupled to the rear wall 204. The rear retainer 160 is loaded into the opening 210 and coupled to the rear wall 204. For example, the channel 170 of the rear retainer 160 receives the rear wall 204. The lobes 180 engage the second side 224 of the rear wall 204. The spring 114 engages the front rim 166 and pushes the front rim 166 against the second side 224 of the rear wall 204. In an exemplary embodiment, the spring 114 is biased against the rear retainer 160 to hold the RF connector 32 relative to the rear wall 204.
The electrical connector assembly 14 includes the housing 20 and a plurality of the electrical connectors 22. The electrical connectors 22 extend from the housing 20 for mating with corresponding RF connectors 32. For example, the electrical connectors 22 may be received in corresponding connector cavities 200. The electrical connectors 22 are connected to the coaxial cables 24.
Each electrical connector 22 includes a shell 230, a dielectric body 232 received in the shell 230 and one of the contacts 154 held by the dielectric body 232. The dielectric body 232 electrically isolates the contact 154 from the shell 230. The shell 230 includes a mating end 236 having an opening 238 that receives the RF connector 32 during mating. The shell 230 includes a terminating end 240 that is terminated to the housing 20.
During mating, the spring 114 allows the RF connector 32 to float within the connector cavity 200 such that the RF connector 32 is capable of being repositioned with respect to the housing 30. Such floating or repositioning allows for proper mating of the RF connector 32 with the electrical connector 22. For example, the spring 114 may be compressed such that the relative position of the mating end 104 with respect to the rear wall 204 changes as the RF connector 32 is mated with the electrical connector 22. The rear flange 142 is pushed rearward away from the rear wall 204 when the spring 114 is compressed. The rear retainer 160 remains positioned at the rear wall 204. The shell 100 moves relative to the rear retainer 160 when mated with the electrical connector 22. The spring 114 is compressed between the front flange 140 and the rear retainer 160.
The front flange 140 maintains the position of the mating end 104 within the connector cavity 200 for mating with the electrical connector 22. For example, the outer edge 144 faces the wall defining the connector cavity 200 and may abut against the wall of the connector cavity 200 to center the RF connector 32 in the connector cavity 200. The outer edge 144 may limit significant lateral movement of the RF connector 32 within the connector cavity 200 within a tolerance that fits within the catch window defined by the opening 238 at the mating end 236 of the electrical connector 22.
In other various embodiments, the RF connector 32 may be removed without the use of the removal tool 190. For example, the RF connectors 32 may be hand removed from the rear of the housing 30, such as by the operator pushing and twisting the RF connectors 32 and then pulling the RF connectors 32 out through the opening 210 and the rear wall 204.
In an exemplary embodiment, the shell 300 is a multi-piece shell and the spring 314 may be loaded between the pieces. For example, the shell 300 includes a front shell 330 and a rear shell 332. A nose 334 of the rear shell 332 is received in a hood 336 of the front shell 330. The front shell 330 may be secured to the rear shell 332, such as by a press-fit and/or crimping and/or soldering. The dielectric body 312 is held within the shell cavity 308 defined by the front shell 330 and/or the rear shell 332.
The front shell 330 includes a front flange 340 and the rear shell 332 includes a rear flange 342. The front flange 340 includes an outer edge 344 having a diameter greater than other adjacent portions of the front shell 330. The outer edge 344 may extend around the entire perimeter of the front flange 340. Alternatively, the front flange 340 may include a plurality of projections at the outer edge 344, where the projections extend further radially outward to define the outer edge 344. In an exemplary embodiment, the rear shell 332 includes one or more keys 348 for keyed mating with the rear retainer 360.
The rear retainer 360 includes a retainer body 362 having an opening 364. The opening 364 is configured to receive a portion of the shell 300. The rear retainer 360 includes a front rim 366. The positioning element 316 is loaded onto the rear of the rear retainer 360 against the back side of the front rim 366. The rear retainer 360 includes a groove 368 rearward of the front rim 366. The positioning element 316 is configured to be coupled to the groove 368. For example, the positioning element 316 includes a first washer 320, a second washer 322 and a compression spring 324 between the first and second washers 320, 322. The compression spring 324 may be a wave spring. The positioning element 316 includes a retaining clip 326 configured to be received in the groove 368 to secure the positioning element 316 to the rear retainer 360. The retaining clip 326 may be a C-clip. The first washer 320 abuts against the front rim 366 and the retaining clip 326 abuts against the second washer 322 to hold the positioning element 316 on the rear retainer 360. The compression spring 324 is positioned between the first and second washers 320, 322.
In an exemplary embodiment, the rear retainer 360 includes a keyway 376 for keyed mating with the shell 300. The keyway 376 extends axially. Optionally, multiple keyways 376 may be provided in alternative embodiments.
In an exemplary embodiment, the rear retainer 360 includes one or more lobes 380 at the front of the rear retainer 360. The lobes 380 may be provided at the front rim 366. The lobes 380 are bumps or protrusions that increase the width or diameter of the rear retainer 360 at the lobes 380. Any number of lobes 380 may be provided in various embodiments. In the illustrated embodiment, three lobes 380 are provided spaced equidistant around the perimeter of the front rim 366. In the illustrated embodiment, the lobes 380 are curved having varying thickness being thinner at the ends of the lobes 380 and thicker at the middle of the lobes 380. Other shapes are possible in alternative embodiments. The lobes 380 are used for mating with the housing. In an exemplary embodiment, a channel 370 is defined between the lobes 380 and the first washer 320. The channel 370 is provided along the exterior perimeter of the front rim 366. The channel 370 is configured to receive a portion of the housing.
In an exemplary embodiment, the RF connector 62 is received in the connector cavity 400 until the positioning element 316 engages the rear wall 404. The front rim 366 is coupled to the rear wall 404. For example, the lobes 380 engage the rear wall 404.
During removal of the RF connector 62, the RF connector 62 may be twist unlocked, such as by hand. For example, the shell 300 may be pushed forward and then twisted to a clearance position in which the lobes are able to clear through the opening 410. When pressed forward, the compression spring 324 is compressed between the first and second washers 320, 322. The rear retainer 360 is rotated after being compressed until the lobes 380 are aligned with the cutouts such that the RF connector 62 may be removed through the opening 410 in the rear wall 404. Optionally, the shell 300 may be rotated with the rear retainer 360.
In an exemplary embodiment, the shell 500 is a multi-piece shell including a front shell 530 and a rear shell 532. The front shell 530 includes a front flange 540 and the rear shell 532 includes a rear flange 542. The front flange 540 includes an outer edge 544 having a diameter greater than other adjacent portions of the front shell 530. In an exemplary embodiment, the front flange 540 includes projections 546 defining the outer edge 544. The outer edge 544 defined by the projections may limit significant lateral movement of the RF connector 92 within the connector cavity of the housing within a tolerance that fits within the catch window of the mating electrical connector.
The rear retainer 560 includes a retainer body 562 having an opening 564. The opening 564 is configured to receive a portion of the shell 500. In an exemplary embodiment, the retainer body 562 is a snap ring configured to be snapably coupled to the rear wall. The retainer body 562 includes a slot 566 that allows the retainer body 562 to be compressible, such as to change a diameter of the retainer body 562, such as for coupling to the housing of the RF module and for removal from the housing of the RF module. The rear retainer 560 includes a groove 568 configured to receive the housing of the RF module to couple the rear retainer 560 to the housing.
The removal tool 94 includes a hollow cylindrical body 570 extending between a front 572 and a rear 574. The body 570 includes channels 576 open at the rear 574. The channels 576 are configured to receive corresponding projections 546. The removal tool 94 is configured to be loaded over the front end of the RF connector 92 to engage and release the retainer body 562. For example, the rear 574 engages the retainer body 562 to compress the retainer body 562 and release the rear retainer 560 from the housing of the RF module.
In an exemplary embodiment, the RF connector 92 is received in the connector cavity 600 until the rear retainer 560 engages the rear wall 604. The retainer body 562 is clipped to the rear wall 604.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. § 172(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.