1. Technical Field of the Invention
The present invention relates generally to the field of electronics. More specifically, the present invention provides radio frequency (RF) connectors and electronics housings or packages employing one or more inventive RF connector(s). RF connector(s) disclosed herein utilize a ground spring to achieve improved conductivity of the ground signal by making a plurality of contacts with a ferrule member of the RF connector's hermetic feedthru and a plurality of contacts with the electronics housing or package at points adjacent to an air dielectric. Ground springs used in connection with the RF connectors of the present invention maintain predetermined spring properties under compression and/or extreme environmental conditions, including thermal fluctuations, and therefore may be suitably employed in aircraft and spacecraft.
2. Description of the Related Art
Electronic components are used in countless applications in a wide variety of environments. Such components are subject to faulty operation, degradation, and corrosion resulting from contact with dust, water vapor, gases, and the like, as well as from high temperature and/or pressure conditions. In order to protect electronic components from such harsh conditions of the operating environment, they are generally, although not exclusively, hermetically sealed within an electronics housing or package that is desirably constructed from materials that meet application specific requirements for density, thermal expansion, thermal conductivity, mechanical strength, and the like. For example, electronics packages used in aircraft and spacecraft applications must be lightweight and are therefore constructed from low density materials such as aluminum or titanium alloys.
Commonly, electronic components on the inside of an electronics housing or package are in electrical contact with components on the exterior of the package by way of an electrical connector, such as an RF connector, that incorporates a hermetic feedthru to maintain the integrity of the electronics housing or package interior. The basic elements of representative prior art “spark plug” and “field replaceable” RF connectors are presented in
To affix RF connector 10 to an interiorly threaded electronics housing or package 26, torque (approximately 25 in-lbs) is applied to RF connector 10. This force causes seal ring 24 to slightly cut into both RF connector 10 and electronics housing or package 26, thereby creating a seal. To insure that RF connector 10 does not back out of electronics housing or package 26 during transport or use, an edge 28 of an RF connector 10-electronics housing or package 26 assembly is soldered about the circumference of RF connector 10. For this purpose, gold plating is optionally used to improve the wetting properties of the solder.
Because of the differing thermal expansion properties of the electronics housing or package and prior art “spark plug” type RF connector, i.e. the externally threaded iron-based metal and the internally threaded aluminum metal, the seal between these components does not reliably maintain its hermeticity. The two dissimilar metals are in intimate contact at ambient temperature; however, since aluminum has a higher expansion rate than does either KOVAR™ or stainless steel, temperatures lower than ambient cause package 26 to squeeze RF connector 10, while temperatures higher than ambient produce a separation between those components. Such phenomena result in fatigue of the solder joint during thermal cycling and cause less than intimate contact between seal ring 24 and electronics housing or package 26 as well as between seal ring 24 and RF connector 10.
Furthermore, the external solder application at 28 prevents RF connector 10 backout by providing a mechanical lock between the components, but because of material fatigue this solder joint also does not form a reliable hermetic seal. And, this RF connector is not field replaceable because removal of the connector compromises the hermeticity of the package and breaks the rigid connection to the end of the pin located inside the package. That is, RF connector 10 cannot be replaced in the field without a high risk of compromising the integrity of electronics housing or package 26 circuitry.
Significant in regards to the presently disclosed invention, the electrical performance of RF connector 10 suffers as a result of temporal disparity owing to differences in lengths of the conductance path of the RF signal and the ground signal to electronics housing or package 26. While the RF signal follows an essentially straight line path through RF connector 10 into electronics housing or package 26 by way of the pin member 20, the ground path must run along the outer surface of teflon insert 16, the outer surface of the glass portion of feedthru 14, the outer surface of teflon member 22, through seal ring 24 into electronics housing or package 26 and about the periphery of the interior of package 26 to the ground location within the electronics housing or package. The resulting ground lag impacts signal gain and loss characteristics, thereby affecting the signal-to-noise ratio. This problem is exacerbated as higher frequency signals are employed.
As described above with respect to the prior art “spark plug” type RF connector of
In an attempt to overcome limitations in prior art RF connectors owing to metal mismatching and fatigue of solder connections, laser welding, rather than soldering, of RF connectors has been utilized to achieve reliable hermetic packaging. For example, RF connectors have been designed to be laser welded directly into an electronics housing or package thus eliminating hermetic failure due to solder joint fatigue. See, e.g., U.S. Pat. No. 5,298,683 to Taylor. Laser welding provides further advantages because the heating is localized at the weld, which permits the enclosure to be welded without damage to the delicate instruments and electronics installed inside. The localized heating also precludes weld induced thermal distortion of the enclosure and obviates the introduction of flux or other contaminants into the enclosure. And, the laser welding process lends itself well to automation for high production rates and low cost.
A limitation of RF connectors stemming from the use of laser welding that has not been adequately addressed in the art, however, is that laser welds, unlike solder joints, do not form a suitable ground path between an RF connector and the electronics housing or package to which it is welded. Thus, the ground lag seen in prior art RF connectors, as described above, that results from differences in signal and ground path lengths significantly compromises the RF connector's signal to noise ratio. What is needed in the art, therefore, are RF connectors having improved ground path conductivity properties.
The present invention addresses these and other related needs by providing RF connectors, principally laser welded RF connectors, that employ improved ground springs to facilitate electrical conductance of a ground signal from the RF connector to an electronics housing or package. RF connectors of the present invention may be suitably employed to form a hermetic seal with a lightweight electronics housing or package, such as an electronics package fabricated out of an aluminum or titanium alloy, and will find use in applications in which the electronics housing or package is exposed to extreme environmental conditions, such as highly corrosive conditions and/or conditions of large thermal variance, as are encountered by aircraft and spacecraft.
Thus, within certain embodiments, the present invention provides RF connectors comprising a hermetic feedthru having two layers wherein the feedthru is fabricated out of a metallic ferrule member and non-conductive dielectric member. Typically, the dielectric member is cylindrical in shape and is fabricated to include a longitudinal channel to accommodate a pin member. Dielectric members may be fabricated out of a material selected from the group consisting of glass, such as Corning Glass No. 7070, while the metallic ferrule member may be fabricated out of a material selected from the group consisting of iron and an iron alloy such as KOVAR™ or stainless steel. Pin members are normally made of iron or an iron alloy.
RF connectors exemplified herein are fabricated from laminated dissimilar metal sheets wherein a first metal layer, constituting the majority of the sheet thickness, is metallurgically bonded to a second metal layer. The first metal layer is, most commonly, iron or an iron alloy such as a KOVAR™ or a stainless steel while the second metal layer is, most commonly, an aluminum or titanium alloy. Typically, a first face of the first metal layer is bonded to the second metal layer through the manufacturing process of explosion welding or roll bonding. While on its opposite, second face, the first metal layer is bonded, typically through laser welding, to the ferrule member of the hermetic feedthru. Similarly, the second metal layer is most often laser welded to the electronics housing or package.
RF connectors of the present invention are commonly used in combination with electronics housing or packages fabricated from lightweight aluminum alloys, such as AlSi, titanium, titanium alloys, and/or KOVAR to maintain the hermeticity of the electronics package while permitting conduction of an electrical signal from the inside of the electronics package to the exterior environment. Within certain embodiments, weldable KOVAR™ packages may be preferred owing to KOVAR's reworkability. As exemplified herein, electronics housings or packages comprise a dielectric material to receive the RF connector pin and to insulate the pin from the electronics housing or package. Most commonly, the electronics housing or package dielectric is an air dielectric.
RF connectors disclosed herein further comprise a highly conductive ground spring member to achieve improved conductance of a ground signal by forming a plurality of first contacts with the ferrule member of the RF connector and a plurality of second contacts with the electronics housing or package. That is, ground springs of the present invention permit the formation of an improved ground connection between the ferrule of the RF connector's hermetic feedthru and the electronics housing or package at points adjacent to the dielectric of the electronics housing or package all the while maintaining the hermeticity of the seal between the RF connector and the electronics housing or package.
Suitable ground springs according to the present invention exhibit good electrical conductivity and are commonly, but not exclusively, made of stainless steel, including gold- or silver-plated stainless steel, or a copper alloy such as, for example, a beryllium-copper alloy including, but not limited to, an alloy comprising 1% Beryllium and 99% Copper (ASTM B194). Ground springs presented herein are also capable of maintaining spring characteristics and maintaining spring force under compression conditions as well as under extreme thermal fluctuations.
Depending upon the precise application contemplated, ground springs may be generally circular in shape with a plurality of circumferentially disposed petal elements thereby facilitating the formation of a plurality of first and second circumferential contacts, respectively, with the ferrule member of the hermetic feedthru and electronics housing or package while simultaneously retaining spring characteristics under compressive force. Alternatively, ground springs may be coiled springs, which are suitable for applications requiring increased mechanical stability and still greater numbers of first and second circumferential contacts with the ferrule member and the electronics housing or package, respectively. Within one embodiment of the present invention, the ground spring is a funnel-shaped formed ground spring that is fabricated such that it is integral with the air dielectric of the electronics housing or package
The above-mentioned and additional features of the present invention and the manner of obtaining them will become apparent, and the invention will be best understood by reference to the following more detailed description, read in conjunction with the accompanying drawings in which:
The present invention is directed to RF connectors that may be employed in conjunction with lightweight, hermetically sealed electronics housing or packages suitable for use in extreme environmental conditions such as those encountered by aircraft and spacecraft. RF connectors presented herein employ one or more ground spring in order to achieve improved conductance of the ground signal from an RF connector to an electronics housing or package. Such inventive RF connectors achieve the practical and reliable installation of hermetic feedthrus into electronics housing or packages by substantially matching the material and/or thermal expansion properties of the electronics housing or package to the corresponding parameters of the inventive RF connector while incorporating one or more ground spring, as disclosed herein, to achieve a more direct ground path.
As used herein, the term “RF connector” connotes the main body of an RF connector, with a pin insert or other pin interface, such as a feedthru, in place; the terms “electronics package” or “electronics housing” (used interchangeably herein) connote one of the components with which the RF connector is to interface; and the term “electronics assembly” connotes the interfaced RF connector-electronics housing or package assembly.
Although the present invention is described below in terms of accomplishing an aluminum alloy-based electronics package-iron-based metal component interface, it will be apparent to one of skill in the art that the principles of the present invention may be employed in other dissimilar metal applications, involving metals such as titanium and titanium alloys and the like.
As a result of the substantial thermal expansion property matching between the electronics assembly components when an RF connector of the present invention is employed, and the use of laser welding to assemble individual RF connector members, failure of the hermetic seals, as is typically seen with solder connections, are generally avoided. Thus, RF connectors presented herein are advantageously employed in applications requiring the re-workability of the hermetic seal.
Ferrule member 106 of hermetic feedthru 114 houses a dielectric member 108, which is generally cylindrically shaped, formed of a suitable material such as Corning Glass No. 7070, and fabricated to exhibit a channel 110 for accepting and sealing pin member 116. Subsequent to sealing pin member 116 into dielectric member 108, the dielectric member 108 is fired into ferrule member 106 to generate a hermetic feedthru. Ferrule member 106 may be larger in circumference than the interiorly threaded portion 104 of explosion welded first and second metal layers 102 and 103, as shown in
Ground spring 120 is formed of a conductive material and makes a plurality of first circumferential contacts 130 with ferrule member 106 and a plurality of second circumferential contacts 132 with electronics housing or package 122. Suitable conductive materials for fabricating ground springs of the present invention include copper alloys, such as beryllium copper alloys, preferably fully heat treated beryllium copper alloys. One such exemplary beryllium copper alloy used to fabricate ground springs disclosed herein comprises about 1% beryllium and about 99% copper. A particularly suitable beryllium copper alloy for such applications is beryllium copper alloy No. 172 (ASTM B194). Other copper alloys, including other beryllium copper alloys, may also be used to fabricate ground springs that are within the scope of the present invention so long as they comprise materials of high electrical conductivity and are capable of maintaining spring properties under compression.
See,
Ground springs 120 of the present invention may be formed ground springs. Exemplary ground springs 120 suitable for use with the RF connectors disclosed herein are presented in
Formed ground springs disclosed herein generally comprise a plurality of petals 144. Typically, formed ground springs comprise between 4 and 20 petals, more commonly between 6 and 12 petals. Exemplary formed ground springs presented herein in
Typically, formed ground springs are fabricated out of a sheet of a suitable conductive material, as described herein above, having a thickness 148 of between about 0.0010±0.0005 inches and about 0.0050±0.0005 inches, more commonly between about 0.0015±0.0005 inches and about 0.0030±0.0005 inches. Exemplary sheets of conductive material used to fabricate the formed ground springs presented herein were about 0.0020±0.0005 inches.
Table 1, below, summarizes exemplary suitable dimensions of formed ground springs of the present invention.
It will be appreciated by those of skill in the art that RF connectors, in particular RF connector pin diameter, vary in size depending upon frequency performance requirements. That is, higher frequencies require smaller pin diameters. And, pin diameter variances require corresponding dielectric diameter changes. These factors directly impact the size of the ground spring of the present invention that is required in order to maintain electrical contact at a plurality of points as described herein. Furthermore, as frequency increases, the total relative electrical contact between the ground spring 130 and the ferrule element 108 becomes more critical.
The ground path of RF connector 100, shown in
Hermetic feedthrus 114 useful in the practice of the present invention are well known in the art and are commercially available. For example, glass-to-metal hermetic feedthrus formed, for example, from a dielectric 108 of Corning Glass No. 7070 glass (Corning Glass Works; Corning, N.Y.) and a KOVAR™ ferrule 106 may be produced substantially as described in U.S. Pat. No. 4,352,951, which is incorporated herein by reference in its entirety. Size modification of commercial feedthrus may be necessary to best accommodate all applications of the present invention. Such modifications may be routinely made by one of skill in the art.
In addition, any known pre- or post-weld production steps may be employed, if desirable for the specific application in which the connector of the present invention is to be used. A skilled artisan is therefore capable of producing an RF connector-electronics housing or package interface to form an electronics assembly in accordance with this embodiment of the present invention.
Furthermore, one of skill in the art is capable of achieving laminated explosion welded and laser welded interfaces between members of the presently described RF connectors and electronics housing or packages comprising such RF connectors to form electronics assemblies in accordance with the presently disclosed embodiments of the present invention.
A suitable laser welding machine may be obtained from Humonics, Inc. (Rancho Cordova, Calif.). For example, a Pulsed Nd:YAG Laser capable of up to 150 watts average power, set to pulse at about 20 pulses per second at a power setting of 1 joule per pulse may be employed. A computer may be used to guide the laser at the weld area while a collar machine tool chuck rotates the assembled enclosure.
An exemplary suitable manufacturing procedure for explosively bonding composite metals is described in U.S. Pat. No. 5,323,955 to Bergmann et al., which is incorporated herein by reference in its entirety, and is well known to and routinely practiced by those of skill in the art. Briefly, explosive welding is a solid state welding process that uses a controlled explosive detonation to force two dissimilar metals together. The resultant metal composite is joined with a durable, metallurgical bond. To achieve an explosion weld, a jetting action is required at the collision interface. This jet is the product of the surfaces of the two pieces of metals colliding and allows dissimilar metallic surfaces to permanently bond under extremely high pressure.
As used herein, the term “thickness” connotes the dimension of an RF connector aligned with the plane of the dissimilar metal sheet from which the RF connector is fabricated, while the term “height” connotes the dimension of an RF connector aligned with the transverse plane thereof.
Generally, the dimensions of RF connector 100 are related to the thickness of the wall of the electronics housing or package 136 with which RF connector 100 is to interface. Conventional RF connectors interface with 0.250 in. thick electronics housing or package walls. RF connectors 100 of the present invention are capable of interfacing with thinner electronics housing or package walls, e.g., walls from about 0.100 in. to 0.125 in. thick. Another factor influencing RF connector 100 dimensions is the interface between connector 100 and components external to the electronics package. More specifically, connector 100 must be of a design compatible with external components to provide electrical communication between such components and components housed within the electronics package.
Preferably, RF connector 100 is formed of a second metal layer 103, generally fabricated out of an aluminum or titanium alloy and having a thickness ranging from about 0.400 in. to about 0.600 in., with about 0.400 in. to about 0.500 in. more preferred, and a first metal layer 102, generally fabricated out of an iron alloy and having a thickness preferably ranging from about 0.010 in. to about 0.200 in., with from about 0.080 in. to about 0.100 in. more preferred. Additional metal layers that may be optionally included in dissimilar metal sheets forming RF connectors 100 useful to accomplish aluminum-to-iron interface are titanium, silver, palladium or the like. Such additional metal layers preferably range from about 0.025 in. to about 0.030 in. in thickness. The total length of RF connector 100 therefore ranges from about 0.400 in. to about 0.650 in.
These dimensions are within the design parameters of standard RF connectors, allowing the connectors of the present invention to be used in such applications. Preferably, the laminated dissimilar or explosively welded metal layers used in the RF connectors of the present invention are formed with aluminum alloy/KOVAR™ or aluminum alloy/stainless steel layers. Exemplary dissimilar metal layers for this purpose are (1) 0.060 in. aluminum alloy 4047, 0.030 in. titanium and 0.250 in. stainless steel 304L and (2) 0.075 in. aluminum alloy 4047, 0.017 in. aluminum alloy 1100 and 0.250 in. KOVAR™.
RF connectors of the present invention may be fabricated as field replaceable RF connectors. Within such embodiments, one component used in conjunction with RF connector 100 is exteriorly threaded and is fabricated to be received by RF connector interiorly threaded portion 104. (See, e.g.,
Operable connection of an exteriorly threaded member at interior threads 104 of RF connector 100 may be achieved by application of torque. Attachment of hermetic feedthru 114 may be achieved through laser welding of the ferrule portion 108 to a surface of first metal layer 102. Attachment of RF connector 100 to electronics housing package 136 may be accomplished through laser welding of second metal layer 103 to electronics housing package 136. Within certain variations of this embodiment, and depending upon the precise application contemplated, first metal layer 102 and/or second metal layer 103 may exhibit one or more laser weld flanges.
While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.