Subject matter disclosed herein relates generally to radio frequency (RF) systems and, more particularly, to techniques for enhancing the power efficiency of RF systems.
Many radio-frequency circuits incorporate power resistors that dissipate energy during circuit operation. Such circuits include radio-frequency (RF) hybrids, power combiners and dividers, isolators, duplexers, outphasing RF power amplifiers, composite RF amplifier systems, termination networks and filters, among other devices. In such applications, resistors are often specified as isolation resistors, terminating resistors, dump resistors, etc. While the power dissipation associated with these resistors is undesirable, their terminal characteristics (and absorption of RF electrical power) are typically necessary for proper circuit function. For example, a terminating resistor of a specified resistance value is necessary in an isolating power combiner (such as, for example, a Wilkinson combiner) in order to preserve isolation between the combiner input ports. Likewise, a circulator having a terminating resistor coupled to a port thereof may be used as an RF isolator that passes signals flowing in one direction while terminating signals flowing in an opposite direction. The energy absorption of the resistor coupled to the circulator is required for the isolator to function as intended.
Because efficiency and energy draw are important in many RF applications, the loss associated with such resistors is undesirable. Moreover, the heat generated by such resistors is undesirable and can limit miniaturization of these items and place burdens on supporting devices (e.g., increasing cooling requirements, requiring fans, etc.). It would thus be desirable to realize the electrical function of these power resistors (e.g., providing a nearly constant equivalent resistive input impedance at a specified operating frequency and absorbing RF electrical power), while reducing the dissipation of the absorbed power.
Systems and techniques are described herein for providing desired operational characteristics of a resistive termination in an RF system, while also allowing power that would normally be dissipated in a resistive termination to be recovered and converted to a useable form.
In accordance with one aspect of the concepts, systems, circuits, and techniques described herein, an energy recovery system is provided that is capable of simulating the behavior of a resistive termination by providing an approximately constant, resistive input impedance to a radio frequency (RF) circuit coupled to the energy recovery system, while recovering energy that would otherwise have been dissipated had a resistive termination been used. The energy recovery system may comprise: a rectification system having a plurality of tuned rectifier circuits and a plurality of rectifier input ports corresponding to the plurality of tuned rectifier circuits, the rectification system to rectify RF energy received at the plurality of rectifier input ports to generate a direct current (dc) signal at one or more rectifier output ports, wherein the tuned rectifier circuits are each tuned to provide an approximately resistive input impedance across a finite input power range; an RF input network having an RF input port and multiple RF output ports, the RF input port forming an input of the energy recovery system and the multiple RF output ports being coupled to the plurality of rectifier input ports of the rectification system, the RF input network to provide input power distribution to the plurality of tuned rectifier circuits and input impedance shaping to shape the combined input impedance of the plurality of tuned rectifier circuits as seen at the RF input port of the RF input network; and a dc-dc converter system having an energy recovery input port and a dc output port, the energy recovery input port of the dc-dc converter system coupled to the output port of at least one rectifier to convert rectified power to a useable dc output voltage, wherein the voltage at the energy recovery input port of the do-dc converter system is regulated.
In accordance with a further aspect of the concepts, systems, circuits, and techniques described herein, a machine implemented method for use in capturing energy output by a radio frequency (RF) circuit comprises: receiving an RF signal from the RF circuit; distributing the RF signal among a plurality of tuned rectifier circuits, the plurality of tuned rectifier circuits to each generate a direct current (dc) signal at an output thereof in response to the RF input signal, wherein the plurality of tuned rectifier circuits are each tuned to provide an approximately resistive input impedance across a finite input power range; providing impedance shaping for the approximately resistive input impedances of the plurality of tuned rectifier circuits to provide an approximately constant, resistive input impedance to the RF circuit; and regulating an output voltage of the plurality of tuned rectifier circuits.
The foregoing features may be more fully understood from the following description of the drawings in which:
Systems and techniques are described herein for providing desired operational characteristics of a resistive termination in a radio frequency (RF) system, while also allowing power that would normally be dissipated in a resistive termination to be recovered and converted to a useable form. Likewise, a termination to a radio-frequency power receiver (such as an antenna or coil) that maintains desirable operating characteristics (e.g., providing a constant matched resistive termination) as operating conditions change can capture RF power that would normally be reflected or lost. To recover RF power and convert it to direct current (dc) signals, the power must be rectified. However, rectification presents many challenges in practice, especially at microwave frequencies (e.g., frequencies above 300 MHz).
First, while one may desire a constant resistive input impedance (e.g., 50 Ohms) to realize a desired circuit function, rectifiers at microwave frequencies typically present effective input impedances that are difficult to make resistive and which vary with RF power level and dc output voltage. In systems having a high peak-to-average power ratio, the problem is particularly challenging. Second, harmonics in the RF input or associated with the rectifier system itself can affect rectifier behavior, and harmonic voltages or currents generated at the energy recovery system input by rectifier operation can be problematic to overall system operation. Third, devices capable of rectifier operation at microwave frequencies are often small (and hence cannot individually handle needed power levels), and rectifier circuits employing them are constrained to operate at low alternating current (ac) input voltages and at dc output voltages that may not be useful for utilizing recovered energy. Moreover, at microwave frequencies, the parasitics associated with rectifier devices (such as, for example, device capacitance and package inductance) can have substantial influence on circuit operation, and make it difficult to provide the desired RF input characteristics. Lastly, the RF input port where the resistor is being replaced is often floating with respect to system ground, while the recovered energy must often be provided at an output port that is referenced to system ground. In various aspects described herein, techniques and circuits are provided that make energy recovery at microwave frequencies practical and effective.
As mentioned above, one challenge to realizing a practical RF energy recovery system is the fact that effective rectifier input impedance (i.e., the complex ratio of the fundamental component of RF voltage to fundamental RF current at the rectifier input port) depends upon the RF input power level and the rectifier output voltage. Moreover, the output voltage that a practical rectifier device or circuit can operate into is often not at a useful level for utilizing recovered energy. The energy recovery dc-dc converter system 12 is provided to address this challenge.
The energy recovery system may often be required to operate at high peak-to-average RF power ratios. Consequently, the instantaneous power delivered to the energy recovery dc-dc converter input port 28 may vary over a wide range. Therefore, in some embodiments, converter 22 may be optimized for operation over a wide range of power levels, including the use of burst mode, cycle skipping, gate-width switching, phase shedding, and related techniques to maintain high efficiency over a wide power range.
In one implementation, the dc-dc converter 22 of
In many applications, it may be desirable to regulate the energy recovery converter input 28 to a nearly fixed voltage independent of rectifier input power, to provide desired operating characteristics (and effective input impedance values) of the rectifiers and, in turn, desired input impedance characteristics of the energy recovery system. In one exemplary embodiment, this is achieved by comparing the energy recovery power converter input voltage to a reference voltage to generate an error signal, and controlling the converter input current, switch current, burst rate, switching frequency, duty ratio or other control variable as a function of the error signal. That is, in this approach, the converter input voltage is regulated to a value at or near the reference voltage by feedback control of the converter.
Alternatively, the energy recovery converter input voltage VRO may be regulated to a voltage that is a function of the current or power delivered to or from the rectifiers. This can be used to extend the operating power range over which the energy recovery system has desirable effective input impedance characteristics (e.g., 50 Ohms, etc.). To understand this, it should be recognized that the effective input resistance of a rectifier is a function of both the power level at which the rectifier is operating and of the rectifier output voltage. For example, as is known in the art, some rectifiers ideally provide an input resistance at the fundamental operating frequency of the form Reff=k(VRO)2/P, where Reff is the effective resistance at the rectifier input, VRO is the rectifier dc output voltage, P is the rectifier output power, and k is a constant that depends on the rectifier topology. For an ideal full-bridge diode rectifier topology, for example, k=8/π2. For an ideal voltage-doubler rectifier topology, k=2/π2 and so on. By adjusting the energy recovery converter input voltage (rectifier output voltage) to be smaller for low power (or rectifier (or rectifier current) levels, the effective resistance provided by the rectifier can be more approximately constant (vary over a smaller range) than if a constant voltage VRO is used. This can be achieved by adjusting the above-mentioned reference voltage as a function of measured, estimated, or expected power, current or another related variable. It should be noted that to achieve this dynamic reference alternative, it is desirable to size the energy recovery converter input capacitance CRO (in conjunction with any rectifier output capacitance) large enough such that the rectifier output voltage ripple at the RF frequency and harmonics is small, but small enough that the rectifier output voltage can adjust on a time scale associated with the power variations to be compensated.
As described previously, one of the functions of the dc-dc converter system 12 of
As described above, one component in the energy recovery system 10 of
In the discussion that follows, the design of individual tuned rectifier circuits will be described. Techniques for integrating multiple rectifier circuits into a rectification system will be described later. It is desired to have a rectifier that provides approximately resistive effective input impedance (i.e., having the fundamental component of RF voltage substantially in phase with fundamental RF current at the rectifier input port) with as little variation in effective impedance (ratio of fundamental voltage to current) as possible across operating conditions. As is known in the art, the effective impedance presented by a rectifier is a function of power and rectifier output voltage. Moreover, with conventional rectifiers (e.g., implemented with diodes), even the small parasitics associated with device capacitance, package capacitance and package inductance can cause substantial deviations from resistive input impedance. To address these challenges, in at least one embodiment, rectifiers incorporating tuned networks are used, where the tuned networks incorporate device and/or package parasitics to achieve the desired operating characteristics. Such tuned or resonant rectifiers can provide nearly resistive input resistance characteristics across a wide power range (e.g., impedance phase magnitude of less than 20 degrees over more than a 5:1 power range, etc.).
In one approach, inductor 118 may be tuned near resonance with capacitor 114 (e.g., LR on the order of 1/(4π2f2CR)). For a given value of CR, the exact value of LR can be selected using simulation software, such as SPICE. The network is loaded with a specified fixed output voltage VRO and driven with a sinusoidal input current IRF (at the design frequency), with LR selected such that the fundamental of VRF is nearly in phase with IRF for a range of current amplitudes. One may adjust the value of CR (by changing discrete capacitance, diode size, etc.) and subsequently retune LR in order to achieve resistive operation of the rectifier at a desired range of power levels (and to best utilize the rectifier device capabilities). In some cases, to achieve the best resistive input impedance across power, a small reactance may be added (inductive or capacitive, not shown) in series with the positive RF input terminal of the rectifier 110. This optional reactance, which would typically be much smaller than the reactance of LR or CR, can be used to offset any residual reactance from the tuning process.
In some implementations, rectifier circuits may be provided that also include tuning for higher-order harmonics.
While the tuned rectifier circuits of
Another component in the energy recovery system of
A byproduct of the rectification process is often the presence of dc, switching harmonics, and other undesired frequency components at the rectifier inputs. These undesired frequency components can cause deleterious effects in the energy recovery system. For example, the unwanted frequency content can pollute the system that the energy recovery system is connected to, can cause undesired interactions among the multiple rectifier circuits, as well as other negative effects. To suppress this content, filtering may be provided at the rectifier inputs and possibly at points closer to the energy recovery system input. In some embodiments, these filters may include tuned series and/or parallel tanks in series with the rectifier inputs (and/or interconnections) or in parallel with the rectifier inputs. For example,
As described previously, better rectifier performance can sometimes be achieved at RF frequencies using rectifier devices that are small in power rating and physical size, making it advantageous to construct an energy recovery system from multiple rectifiers of reduced power rating. Moreover, utilizing a plurality of rectifiers, one can construct a rectifier system providing lower effective input impedance variation than is provided by a single rectifier, as described in detail below. To implement a multi-rectifier system, in at least one embodiment, the RF input network may include a power dividing and impedance shaping network that splits power among the various rectifiers and provides an input impedance that varies over a smaller range (e.g., a ratio of input resistances or input impedance magnitudes) than the individual rectifiers. Desirable attributes of such a power dividing network include relatively even power splitting among the individual rectifiers and lossless or very low loss operation.
In some embodiments, a resistance compression network (RCN) may be used to provide the power dividing and impedance shaping network of the RF input network.
The resistance compression network 200 of
Power dividing and resistance compression can also be achieved with circuits incorporating transmission-line sections (e.g., section of microstrip, etc.).
The power dividing and impedance shaping network of the RF input network may also be implemented using other network types and topologies. For example,
Additional power dividing can be obtained using networks that are not ideally lossless and/or which do not provide reduction in impedance range. For example, power may be split further using an isolating power splitter to divide up power to multiple resistance-compressed rectifier systems.
In some embodiments, the RF input port of an energy recovery system is referenced to a common potential (e.g., ground, etc.). However, in some cases, the input port may be “differential” or floating (or “flying”) with respect to system ground, while the recovered energy must be provided at an output port that is referenced to system ground. For example, the isolation port of a Wilkinson combiner is not ground referenced, but represents a “differential” input. One technique to recover energy at a floating or “flying” input port involves the use of an RF transformer or balun to transfer energy from the flying input voltage to a common-referenced port.
Another technique to transfer energy from a “flying” input port to a common-referenced port for energy recovery purposes involves the use of transmission-line sections.
Other alternative techniques for converting “flying” or differential inputs to common-referenced outputs for energy recovery can be utilized in other embodiments. Combined with the other portions of the energy recovery system, these techniques enable RF energy to be recovered from “flying” ports.
It is recognized that even with filtering, some applications may be sensitive to any reflected power from the energy recovery system (including at the operating frequency, harmonics, or other frequencies). In such cases, an isolator may be used as part of the energy recovery input network to terminate any reflected power generated by the energy recovery system. As shown in
The availability of an energy recovery system also enables additional functions and features to be realized. One such function is power monitoring. For example, an additional circuit can be provided that monitors information about the energy recovery system, such as the input and/or output power of the system. In some implementations, the system output power is monitored using the sensing and/or control signals of the energy recovery dc-dc converter, in some other implementations, the output power may be monitored using additional low-frequency sensors or other structures. In at least one embodiment, the input power may be monitored based on the operating point of the rectifier circuits. Alternatively, the input power may be monitored based on the operation of the energy recovery converter (e.g., estimating input power based on the known characteristics of the system and the converter input or output current, voltage, or power or rectifier input or output voltage, current, or power). Additional monitoring circuitry may also be provided in some embodiments. This may include, for example, circuitry for monitoring system temperature, operating status, and/or other critical operating parameters.
Many RF circuits incorporate power resistors that dissipate energy during circuit operation. Such circuits include RF hybrids, power combiners and dividers, isolators, RF power amplifier systems, duplexers, filters and termination networks, among other devices. Each of these circuit types can benefit by incorporating the energy recovery techniques described herein. Likewise, many RF circuits seek to absorb energy from an antenna, transformer secondary, coil, or other means of receiving RF energy, including in rectenna systems, wireless power transfer systems, inductive power coupling systems, radio-frequency power converter systems including RF dc-dc converters, and microwave power transmission systems. It is desirable to be able to capture RF energy in these systems and convert it to useable form, while minimizing reflected or dissipated RF power. Each of these circuit types can likewise benefit by incorporating the energy recovery techniques described herein.
One type of circuit that can benefit from the described techniques is an isolator.
Another application that can benefit from energy recovery is power combining and/or splitting.
In the illustrated embodiment, the combiner/splitter 332 includes four ports: port 1, port 2, a sum port, and a difference (delta) port. The energy recovery system 330 may be coupled to either the sum port or the difference port. The energy recovery system 330 may provide, for example, a proper termination for the corresponding port (e.g., the difference port in
In some systems, three (or more) way combining/splitting may be used.
Another application that can benefit from the energy recovery techniques described herein is power amplification. More specifically, systems where power from multiple power amplifiers is combined to create a single higher power signal.
A power amplifier system with multiple power amplifiers can also be implemented as a balanced power amplifier system that realizes improved efficiency under load mismatch (e.g., from a non-ideal load impedance) at its output port.
Resistance compression networks (RCNs) absorb energy from a source and deliver it (ideally losslessly) to a plurality of loads (e.g., such a set of rectifiers), providing an input resistance that varies over a narrow range as the resistance of the loads vary together over a wide range. Resistance compression networks can also serve to reduce the phase of the input impedance as compared to the phase of the load impedances (phase compression). Ideally, the RCN splits input power substantially equally among the loads. Conventional resistance compression networks use reactances to accomplish this, and may additionally include transmission-line sections, as illustrated in
In some embodiments, resistance compression networks may be implemented using transmission-line sections having asymmetric lengths, wherein the transmission-line sections are provided as two-port structures interconnecting among the source and loads. Such Transmission-Line Resistance Compression Network (TLRCN) implementations may provide several benefits. For example, they can (a) have low loss, (b) enable repeatable, low-cost implementation using printed circuit techniques, (c) provide filtering, and (d) with correct length selections, they can provide resistance compression at one or more harmonic frequencies. Moreover, at UHF frequencies and above, the discrete reactances often used in conventional RCN designs represent an increasing challenge. That is, the transmission-line effects associated with their physical size can substantially influence system behavior, and their numerical values can become extremely small, making them difficult to implement accurately and making the system susceptible to parasitic effects. TLRCN implementations, on the other hand, avoid these issues by directly realizing the RCN as a transmission-line structure interconnecting the source and loads.
A description will now be made of the theory and operating characteristics of Transmission-Line Resistance Compression Networks. With a TLRCN network, substantially balanced splitting of power to multiple loads and smaller variation in driving point resistance as compared to load resistance variation may be achieved using only transmission-line sections used as two-port devices to connect among the sources and loads.
l1=lBase+Δl
l2=lBase−Δl (1)
θ1=θBase+Δθ
θ2=θBase−Δθ (2)
We obtain desired operating characteristics at a frequency of interest by proper selection of Z0, θBase, and Δθ.
While there are multiple possibilities for base lengths, we first consider a base length lBase of λ/4 (a quarter wavelength at a frequency of interest), corresponding to θBase=π/2 radians. (Any base length with an additional multiple of λ/2 in length will provide similar results.) Considering the first and second branches 500, 502 in
Since these admittances are complex conjugates, the network will divide power entering the input port equally to both loads (for identical load resistances). The impedance seen at the input port at the frequency of interest is resistive in this case, and can be shown to be:
Such a characteristic clearly realizes resistance compression: the input impedance is resistive and varies only over a small range as the load resistances vary together over a wide range. In fact, this input resistance characteristic bears close relation to the input resistance of a type of resistance compression network that uses reactances in series with the load networks (e.g., see
Using the above-described network with a base angle of θBase=π/2, “balanced” compression can be achieved for a range of load resistances having a geometric mean of RL,center:
RL,center=Z0·|cot(Δθ)| (5)
At this load resistance value (RL,center), the input resistance takes on a minimum value of Rin,min, with larger input resistance for other load resistances. The value of Rin,min may be calculated as follows:
Which, for large values of RL,max/RL,min approaches:
The high degree of resistance compression provided by this system can be seen in these expressions and in
It should be noted that other base lengths besides lBase=λ/4 (θBase=π/2 radians) can be used. For example, a base length of lBase=λ/2 (θBase=π radians) likewise results in equal power transfer to the two loads and a compressed resistive input impedance. The characteristics associated with this base length will be the same as that in Equations (3)-(6), except with cot(Δθ) replaced with −tan(Δθ) in each expression. Likewise, operation will be the same with any additional multiple of λ/2 added to the base length. Because of this, with appropriate selections of base length at a desired fundamental frequency, the system can be designed to also provide resistance compression at one or more harmonic frequencies (and at subharmonic frequencies), provided that the loads have appropriate frequency characteristics.
There are multiple possible design approaches for TLRCN circuits. Considering a base length lBase=λ/4 (θBase=π/2 radians), one may a priori select a value of Δθ=π/4 radians (Δl=λ/8), such that θ1=3π/4 and θ2=π/4. For balanced compression, one may then select Z0 as RL,center (the geometric mean of the maximum and minimum load resistances RL,max and RL,min). In this case, the load resistances loading each transmission-line section vary (geometrically) about the characteristic impedance of the lines, which helps reduce required transmission-line reflection and loss. This design choice provides a compressed input resistance having a range of values determined by the load resistances. In cases where this range of input resistance values is not what is desired for the system, an additional impedance transformation stage may be placed at the input of the TLRCN. One highly effective means to do this is to add an additional quarter-wave line at the input to the compression stage, as illustrated in
The whole transmission-line structure of
ZT=√{square root over (Zin,T,desired·Zin,median)}. (9)
Another design approach takes advantage of the freedom to choose both the differential length and the characteristic impedance of the transmission lines. One can also choose the base length. In the example that follows, a base length of θBase=π/2 radians at the operating frequency will be used. By properly selecting the differential length and the characteristic impedance, within certain bounds, one can directly realize both resistance compression and a desired specified input resistance directly with the structure of
One could likewise select Rin,min to be some other value close to Rin,desired to achieve good results.
Based on selecting RL,center and Rin,min as described above (with resistance Rin,min necessarily selected below RL,center), one can directly choose Z0 and Δθ of the network of
This design choice has the advantage of providing both resistance compression and impedance transformation (where needed) in a compact structure. However, the practicality of such an implementation will depend on the desired values. For example, as Rin,min approaches RL,center, the characteristic impedance of the transmission line can grow unreasonably large. It should also be appreciated that one can use the selection of the transmission-line impedance and differential length to provide a first-degree of impedance transformation, and add another quarter-wave transformer at the input (and/or a set of quarter-wave transformers between the base compression stage and the loads) to provide additional impedance transformation.
As with conventional resistance compression networks, one may construct multi-stage or multi-level compression networks to provide greater degrees of resistance compression than obtained with a single-level design. As with conventional resistance compression networks, this may be done by cascading single-level resistance compression stages in a tree structure, though other structural implementations of multi-level TLRCNs are possible.
Combining a transmission-line resistance compression network with a set of rectifiers forms a resistance compressed rectifier system. An exemplary resistance-compressed rectifier system 520 incorporating a TLRCN is shown in
It will be appreciated that the inventive energy recovery system can be employed in numerous other applications in which energy is conventionally delivered to a resistive termination. By replacing the lossy termination with the energy recovery system, the power that would otherwise be lost can be captured and converted to a useful form, while maintaining a desirable loading characteristic at the termination port.
Having described exemplary embodiments of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may also be used. The embodiments contained herein should not be limited to disclosed embodiments but rather should be limited only by the spirit and scope of the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
This application claims the benefit of U.S. Provisional Application No. 61/663,930 filed Jun. 25, 2012 under 35 U.S.C. §119(e) which application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4319359 | Wolf | Mar 1982 | A |
5568088 | Dent et al. | Oct 1996 | A |
5638024 | Dent et al. | Jun 1997 | A |
5708573 | Lusher et al. | Jan 1998 | A |
5736877 | Tihanyi | Apr 1998 | A |
5892395 | Stengel et al. | Apr 1999 | A |
6600384 | Mohwinkel et al. | Jul 2003 | B2 |
6887339 | Goodman et al. | May 2005 | B1 |
7279971 | Hellberg et al. | Oct 2007 | B2 |
7508262 | Wagner et al. | Mar 2009 | B1 |
7535133 | Perreault et al. | May 2009 | B2 |
7589605 | Perreault et al. | Sep 2009 | B2 |
7889519 | Perreault et al. | Feb 2011 | B2 |
7956572 | Zane et al. | Jun 2011 | B2 |
8026763 | Dawson et al. | Sep 2011 | B2 |
8164384 | Dawson et al. | Apr 2012 | B2 |
8212541 | Perreault et al. | Jul 2012 | B2 |
8451053 | Perreault et al. | May 2013 | B2 |
8638156 | Shibata et al. | Jan 2014 | B2 |
20040027209 | Chen et al. | Feb 2004 | A1 |
20060193095 | Hunter et al. | Aug 2006 | A1 |
20090200985 | Zane et al. | Aug 2009 | A1 |
20100120384 | Pennec | May 2010 | A1 |
20110187437 | Perreault et al. | Aug 2011 | A1 |
20110215866 | Dawson et al. | Sep 2011 | A1 |
20120176195 | Dawson et al. | Jul 2012 | A1 |
20120313602 | Perreault et al. | Dec 2012 | A1 |
20120326684 | Perreault et al. | Dec 2012 | A1 |
20130241625 | Perreault et al. | Sep 2013 | A1 |
20130343107 | Perreault | Dec 2013 | A1 |
20140118063 | Briffa et al. | May 2014 | A1 |
20140118065 | Briffa et al. | May 2014 | A1 |
20140118072 | Briffa et al. | May 2014 | A1 |
20140120854 | Briffa et al. | May 2014 | A1 |
20140125412 | Dawson et al. | May 2014 | A1 |
20140132354 | Briffa et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1506633 | Apr 1978 | GB |
WO 0067373 | Nov 2000 | WO |
WO 0110013 | Feb 2001 | WO |
WO 2005106613 | Nov 2005 | WO |
WO 2006119362 | Nov 2006 | WO |
WO 2007082090 | Jul 2007 | WO |
WO 2007094921 | Aug 2007 | WO |
WO 2010056646 | May 2010 | WO |
WO 2011097387 | Aug 2011 | WO |
WO 2013109719 | Jul 2013 | WO |
WO 2013109743 | Jul 2013 | WO |
WO 2013109797 | Jul 2013 | WO |
WO 2013134573 | Sep 2013 | WO |
WO 2013191757 | Dec 2013 | WO |
WO 2013048747 | Jan 2014 | WO |
WO 20141028441 | Feb 2014 | WO |
WO 2014070474 | May 2014 | WO |
WO 2014070475 | May 2014 | WO |
WO 2014070998 | May 2014 | WO |
WO 2014085097 | Jun 2014 | WO |
Entry |
---|
Beltran, et al.; “An Outphasing Transmitter Using Class-E PAs and Asymmetric Combining: Part 1;” High Frequency Electronics: Summit Technical Media, LLC; Apr. 2011; pp. 18-26. |
Beltran, et al.; “An Outphasing Transmitter Using Class-E PAs and Asymmetric Combining: Part 2;” High Frequency Electronics; Summit Technical Media, LLC; May 2011; pp. 34-46. |
Chang, et al.; “A Power-Recycling Technique for Improving Power Amplifier Efficiency Under Load Mismatch;” IEEE Microwave and Wireless Components Letters; vol. 21; No. 10; Oct. 2011; pp. 571-573. |
Eun, et al.; “A High Linearity Chireix Outphasing Power Amplifier Using Composite Right/Left-Handed Transmission Lines;” Proceedings of the 4th European Radar Conference; Oct. 2007; pp. 343-346. |
Gerhard, et al.; “Novel Transmission Line Combiner for High Efficient Outphasing RF Power Amplifiers;” Proceedings of the 37th European Microwave Conference; Oct. 2007; pp. 1433-1436. |
Gody, et al.; “Outphasing Energy Recovery Amplifier with Resistance Compression for Improved Efficiency;” IEEE Transactions on Microwave Theory and Techniques; vol. 57; No. 12; Dec. 2009; pp. 2895-2906. |
Gutmann, et al.; “Power Combining in an Array of Microwave Power Rectifiers;” IEEE Microwave Symposium Digest; Apr. 30, 1979-May 2, 1979; pp. 453-455. |
Han, et al.; “Resistance Compression Networks for Radio-Frequency Power Conversion;” IEEE Transactions on Power Electronics; vol. 22; No. 1; Jan. 2007; pp. 41-53. |
Langridge, et al.; “A Power Re-Use Technique for Improved Efficiency of Outphasing Microwave Power Amplifiers;” IEEE Transactions on Microwave Theory and Techniques; vol. 47; No. 8; Aug. 1999; pp. 1467-1470. |
Nitz, et al.; “A New Family of Resonant Rectifier Circits for High Frequency DC-DC Converter Applications;” Applied Power Electronics Conference and Exposition; 1988; APEC 88; Conference Proceedings 1988; Feb. 1-5, 1988; pp. 12-22. |
Paing, et al., “Resistor Emulation Approach to Low-Power RF Energy Harvesting;” IEEE Transactions on Power Electronics; vol. 23; No. 3; May 2008; pp. 1494-1501. |
Perreault; “A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification,” IEEE Transactions on Circuits and Systems-I: Regular Papers; vol. 58; No. 8; Aug. 2011; pp. 1713-1726. |
Rivas, et al.; “New Architecture for Radio Frequency dc/dc/ Power Conversion;” 2004 35th Annual EIII Power Electronics Specialist Conference; Aachen, German; vol. 15; Jun. 2004; pp. 4074-4084. |
International Search Report and Written Opinion of the ISA for PCT/US2006/016981 dated Dec. 2006. |
U.S. Pat. No. 7,535,133 issued on May 19, 2009. |
PCT Search Report of the ISA for PCT/US2013/048747 dated Jan. 31, 2014. |
PCT Written Opinion of the ISA for PCT/US2013/046747 dated Jan. 31, 2014. |
Office Action dated Mar. 28, 2014 from U.S. Appl. No. 13/800,221, filed Mar. 13, 2013. |
Response to Office Action Mar. 28, 2014 Office Action as filed on Apr. 10, 2014 from U.S. Appl. No. 13/800,221, filed Mar. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/800,221, filed Mar. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20130343106 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61663930 | Jun 2012 | US |