1. Technical Field
The present disclosure relates generally to switches. More particularly, this disclosure relates to microfabricated electromechanical switches having a spring-loaded latching mechanism.
2. Description of Related Art
Switch networks are found in many systems application. For example, in satellite systems, switch networks are essential for routing matrices and redundancy systems. Future satellite systems will not only require larger switch routing networks, but also increased functionality for network-centric operations. These new capabilities will includes spacecraft reconfiguration for beam switching, beam shaping, and frequency agility. Thus, it is expected that satellites will require an increasing number of switches in their payloads.
In many cases, these switches need to be latching, that is, once they are actuated they will remain in a desired state even after the actuation energy source is removed. Some of the applications where latching switches are important are ultra-reliable networks where power interruptions could create a problem, such as satellite or Unmanned Air Vehicles, or networks where supplied power is limited, like in small mobile platforms that run on batteries. Current latching switch technology typically relies on magnetic or motor drives to change switch states. These switches, typically fabricated using coaxial conductors or metallic waveguide, generally work very well. However, most of the applications listed above would benefit from size and weight reduction since the mechanical latching switches currently in use tend to be larger and heavier than desired. Semiconductor switches, such as made using PIN diodes and FET switches, are small, but they typically cannot latch in multiple states without a constant energy source.
Radio Frequency (RF) Micro Electro-Mechanical System (MEMS) switches are known in the art to have small size and weight and are also known to provide desirable performance in the radio frequency and microwave spectrums. Several types of MEMS switches are well-known in the art. For example, U.S. Pat. No. 5,121,089 issued Jun. 9, 1992 to Larson discloses a microwave MEMS switch. The Larson MEMS switch utilizes an armature design. One end of a metal armature is affixed to an output line, and the other end of the armature rests above an input line. The armature is electrically isolated from the input line when the switch is in an open position. When a voltage is applied to an electrode below the armature, the armature is pulled downward and contacts the input line. This creates a conducting path between the input line and the output line through the metal armature. This switch requires a constant voltage to maintain the switch in a closed state.
As another example, U.S. Pat. No. 6,046,659 of Loo et al. discloses methods for the design and fabrication of non-latching single pole single throw MEMS switches. U.S. Pat. No. 6,046,659 is incorporated herein by reference in its entirety.
Loo et al. generally describe a surface micromachined device. That is, layers are deposited on top of a substrate, and then one or more of the layers is etched away to release the moving parts of the switch 10. As described in Loo et al., the parts of the switch generally comprise gold (or gold alloys) for the switch contacts, silicon dioxide for the one or more layers etched away (i.e., the sacrificial layers), and silicon nitride for the beam structural layer. However, the Loo switch generally requires a voltage to be applied to keep the switch in a closed state.
An example of a latching micro switch is described in U.S. Pat. No. 6,496,612 issued Dec. 17, 2002 to Ruan et al. Ruan et al. describe a switch having a cantilever to switch between an open state and a closed state. To operate as a latching switch, a permanent magnet is used to maintain the cantilever in an open state or a closed state. However, the use of a permanent magnet may result in a switch that is bigger and/or heavier than desired. Further, the placement of the permanent magnet further complicates the manufacture of the switch, increasing the cost of the switch.
Another example of a latching switch is described by Xi-Qing Sun, K. R. Farmer and W. N. Carr in “A Bistable Micro Relay Based on Two-Segment Multimorph Cantilever Actuators,” The Eleventh Annual International Workshop on Micro-electro Mechanical Systems, 1998, MEMS 98 Proceedings, Jan. 25-29, 1998, pp. 154-159. Sun et al. describe a latching switch mechanism that uses two metals to create stresses in opposite directions along a cantilever beam. RF contacts can be moved by controlling the stress on the two segments electrostatically to lengthen or shorten the length of the cantilever along the substrate so that the contact can be moved from one RF line to another. The fabrication of the switch disclosed by Sun et al. may be complicated since two different metals are required. Further, the latching force is on a direction that may ultimately pull the metal bar from the cantilever.
Therefore, there is a need in the art for small, lightweight latching switch that does not require a constantly applied external voltage or magnetic source to stay latched in a selected state.
Embodiments of the present invention provide for a method and apparatus for switching that is latchable. An embodiment of the present invention comprises a RF MEMS metal contact electrostatically actuated latching switch. According to embodiments of the present invention, a cantilever arm is provided that can be moved into orthogonal directions for latching and unlatching. That is, in one orientation, the cantilever arm may be moved in both a horizontal direction and a vertical direction.
Embodiments of the present invention may have a latching structure that essentially comprises a metalized angular mortise and tenon structure. The mortise and tenon structure may be provided by etching a substrate to provide a dovetail structure at the edges of the etched portions of the substrate. The etched edge of the substrate then forms the mortise. The end of the cantilever arm is fabricated to form the tenon. In a latched state, the tenon portion of the cantilever arm fits within the mortise portion of the substrate.
According to some embodiments of the present invention, movement in orthogonal directions may be provided by a combined comb-drive actuator structure and parallel plate actuator structure to move a cantilever arm prior to latching or unlatching. The comb-drive actuator structure provides the capability to move the cantilever arm parallel to the substrate surface. The parallel plate actuator structure provides the capability to move the cantilever arm vertically in a manner similar to that described above for the Loo switch.
These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings described below. However, this invention may be embodied in many different forms and should not be construed as limited to the embodiments depicted in the drawings or described below. Further, the dimensions of certain elements shown in the accompanying drawings may be exaggerated to more clearly show details. The present invention should not be construed as being limited to the dimensional relations shown in the drawings, nor should the individual elements shown in the drawings be construed to be limited to the dimensions shown.
It should be appreciated that the particular embodiments shown and described herein are examples of the invention and are not intended to otherwise limit the scope of the present invention in any way. Indeed, for the sake of brevity, conventional electronics, manufacturing, MEMS technologies and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail herein. Furthermore, for purposes of brevity, embodiments of the invention are frequently described herein as pertaining to a micro electromechanical switch for use in electrical or electronic systems. It should be appreciated that many other manufacturing techniques could be used to create the embodiments described herein. Further, the embodiments according to the present invention would be suitable for application in electrical systems, optical systems, consumer electronics, industrial electronics, wireless systems, space applications, or any other application. Moreover, it should be understood that the spatial descriptions (e.g. “above”, “below”, up “down”, etc.) made herein are for purposes of illustration only, and that embodiments of the present invention may be spatially arranged in any orientation or manner.
A top view of an embodiment of a switch 100 according to the present invention is shown in
The switch beam 150 is preferably disposed above the etched region 103. For ease of understanding, the switch 100 can be considered as comprising four parts. The first portion consists of the switch beam 150, a beam electrode 156 and a substrate electrode 158. The switch beam 150 preferably comprises at least two structural layers 151, 152 and one or more metal layers 153. The at least two structural layers 151, 152 preferably comprise silicon nitride and the one or more metal layers 153 preferably comprise gold, each 1-2 μm in width. The structural layers 151, 152 may comprise dielectric materials other than silicon nitride. However, such other dielectric materials should be easily deposited and patterned and have good resistance to the final release etch of the sacrificial layer, discussed below. Silicon nitride is preferred, since it is a material that is commonly used in the semiconductor industry. Materials other then gold, such as aluminum, may be used for the one or more metal layers 153.
As shown in
The beam electrode 156 and the substrate electrode 158 are used to create an electrostatic field to pull the switch beam down 150. The actuation voltage may be applied to the substrate electrode through substrate electrode actuation pads 159. The beam electrode 156 may be connected through the switch beam 150 and a spring section 160 (discussed below) to ground pads 157. Upon application of a voltage to the substrate electrode actuation pads 159, the beam electrode 156 will be attracted to the substrate electrode 158, causing the switch beam 150 to move towards the substrate 101.
The next part of the switch 100 is where the RF signal is switched. It includes the tip 161 of the switch beam 150, which comprises a conducting material. Preferably, the conducting material is gold. A metalized mortise 163 is disposed on the dovetail structure 105 formed by the etching of the substrate 101. The mortise 163 preferably comprises gold that is sputtered on and under the overhanging dovetail structure 105. Input 167 and output 169 RF lines are disposed on the substrate 101. The input 167 and output 169 RF lines may be sputtered down and then plated to the desired thickness. A gap 165 in the metalized mortise 163 separates the input 167 and output 169 RF lines. It is preferred that the tip 161 and mortise 163 comprise gold, but other metals or conducting materials that do not easily oxidize may also be used.
The third part of the switch 100 is a switch beam spring 170. The switch beam spring 170 comprises one or more cross beams 171, 173 attached to switch beam anchors 175. The switch beam anchors 175 comprise posts disposed on the substrate 101. In equilibrium, the spring beam 150 is disposed such that the tip 161 of the switch beam 150 extends beyond the mortise 163, as shown in
The fourth part of the switch 100 is one or more comb-drive actuators 180 consisting of pairs of interdigitated fingers 181. The fingers 181 preferably comprise the same structural layers 151 and metal layers 153 that the switch beam 150 is fabricated from. One side of the comb-drive actuator 180 is anchored to the substrate 101 by comb actuator posts 188. One side of the interdigitated fingers 181 are electrically connected to comb-drive actuation electrode pads 187 through the comb actuator posts 188 by metal lines and vias. The other side of the interdigitated fingers 181 is attached to the switch beam spring 170. The other side of the interdigitated fingers 181 is electrically connected to the ground actuation pads 157 by the metal line 177.
The steps for latching the switch 100 are described below and are also shown in
To unlatch the switch, the voltage VL is again applied to the comb-drive actuator 180. The tip 161 of the switch beam 150 will slide out of the metalized mortise 163, and, because the pull-down voltage is not present, the switch beam 150 will pop up. Removal of the comb-drive actuation voltage then puts the switch beam 150 back into equilibrium where it originated. The gap 165 between the RF lines 167, 169 is now not connected, so the switch 100 is open.
The viability of this switch can be demonstrated by simple calculations.
The formula for the attractive force along the horizontal direction (i.e., the X direction shown in
where H is the finger height and Z is the finger gap. V is the applied voltage and ε0 is the electric permittivity. N is the number of interdigitated finger surface pairs. If V=50 V and N=201, the force is Fx=5.5×10−5 Newtons. The number of interdigitated finger pairs used for the calculation is considered reasonable, since comb-drive actuators are known in the art that use more than this number.
The lateral displacement may also be determined by reviewing the geometry of the structure depicted in
x=0.625FxL3E−1H−1D−3
where L is the length of the switch spring, D is the width of the switch spring, and H is the height of the switch spring (the same as for the comb-drive fingers). With the values given, it is found that x=18.2 μm, which should be more than enough to pull the end of the spring beam behind the mortise.
The processing of the switch is slightly modified from the current processing practice. The only fabrication differences from the current practice are 1) the first etching step to create the mortise and tenon by etching GaAs to the desired depth, and 2) the dimple etching step is not needed. The layer thickness may be varied depending upon the required latching forces and desired comb-drive actuator voltages. Additional layers of gold and nitride may also be added to build up the height of the comb-drive fingers to reduce the needed voltage. The use of sputtered gold insures that metal coats the edges of the mortise 163.
Next, as shown in
Another advantage of using SiO2 as the support layer 210 is that SiO2 can withstand high temperatures. Other types of support layers, such as organic polyimides, harden considerably if exposed to high temperatures. This makes the polyimide sacrificial layer difficult to later remove. The support layer 210 is exposed to high temperatures when the silicon nitride for the structural layers 151, 152 is deposited, as a high temperature deposition is desired when depositing the silicon nitride to give the silicon nitride a lower HF etch rate.
As shown in
If the support layer 210 comprises of SiO2, then it will typically be wet etched away in the final fabrication sequence by using a hydrofluoric acid (HF) solution. The etch and rinses are preferably performed with post-processing in a critical point dryer to ensure that the switch beam 150 does not come into contact with the substrate 101 when the support layer 210 is removed. If contact occurs during this process, device sticking and switch failure are likely. Contact is prevented by transferring the switch from a liquid phase (e.g. HF) environment to a gaseous phase (e.g. air) environment not directly, but by introducing a supercritical phase in between the liquid and gaseous phases. The sample is etched in HF and rinsed with DI water by dilution, so that the switch is not removed from a liquid during the process. DI water is similarly replaced with ethanol. The sample is transferred to the critical point dryer and the chamber is sealed. High pressure liquid CO2 replaces the ethanol in the chamber, so that there is only CO2 surrounding the sample. The chamber is heated so that the CO2 changes into the supercritical phase. Pressure is then released so that the CO2 changes into the gaseous phase. Now that the sample is surrounded only by gas, it may be removed from the chamber into room air.
The fabrication of an alternative embodiment according to the present invention is depicted in
As can be surmised by one skilled in the art, there are many more configurations of the present invention that may be used other than the ones presented herein. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it be understood that it is the following claims, including all equivalents, that are intended to define the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
5121089 | Larson | Jun 1992 | A |
5351412 | Furuhata et al. | Oct 1994 | A |
5418418 | Hirano et al. | May 1995 | A |
6046659 | Loo et al. | Apr 2000 | A |
6331257 | Loo et al. | Dec 2001 | B1 |
6496612 | Ruan et al. | Dec 2002 | B1 |
6509670 | Jeong et al. | Jan 2003 | B2 |
6798315 | Schaefer | Sep 2004 | B2 |
7138893 | Nakanishi et al. | Nov 2006 | B2 |
20040164825 | Volant et al. | Aug 2004 | A1 |