1. Field of the Invention
This invention relates to RF micro-electro-mechanical system (MEMS) capacitive switches and, more particularly, to the reduction of trapped charge in RF MEMS capacitive switches.
2. Description of the Related Art
A radio frequency (RF) micro-electro-mechanical system (MEMS) capacitive switch includes a top electrode that is displaced toward a bottom electrode in response to the application of a voltage differential between the electrodes. An RF signal applied to one of the electrodes sees a variable capacitance based on the displacement. In various types of MEMS capacitive switches the top electrode may include a flexible membrane that is suspended between two or more posts and displaced parallel to the bottom electrode, a rigid beam that is cantilevered from a single post or a flexible vertical beam that is incrementally displaced to a horizontal position akin to a “zipper”. The top electrode exhibits a resilience that resists the displacement and urges the top electrode to return to a deactuated position, which it does when the voltage differential is removed. Different types of MEMS switches may be “binary” such as the membrane or cantilevered switches or “analog” such as the zipper switch.
To both maximize the capacitance in the actuated state and to prevent the top electrode from contacting the bottom electrode, the MEMS capacitive switch includes dielectric material formed on the bottom electrode. One problem is that, when the top electrode is displaced and contacting the dielectric material in the actuated state of the switch, electric charge can tunnel into and become trapped in the dielectric material. As a result, and due to long recombination times in the dielectric, the amount of this trapped charge in the dielectric material increases progressively over time and exerts a progressively increasing attractive force on the top electrode. When the top electrode is in its actuated position, this attractive force tends to resist movement of the top electrode away from its actuated position toward its deactuated position. The amount of trapped charge can eventually increase to the point where the attractive force exerted on the top electrode by the trapped charge is in excess of the inherent resilient force of the top electrode, which is urging the top electrode to return to its deactuated position. As a result, the top electrode becomes trapped in its actuated position, and the switch is no longer capable of carrying out a switching function. This is considered a failure of the switch, and is associated with an undesirably short operational lifetime for the switch.
Many prior attempst have been made to solve or at least reduce the dielectric charging problem. One approach was to change the properties of the dielectric material so as to modify the extent to which the dielectric material is “leaky”. Another prior approach is to alter the waveform used for the DC bias voltage. Another prior approach is to “texture” one or both of the top electrode or dielectric material. Yet another prior approach is to pattern the dielectric material to form an array of posts. This approach reduces the amount of trapped charge but also reduces the amount of dielectric material between the electrodes, which runs counter to the traditional design goal to maximize the capacitance ratio of the switch.
Referring now to
The following is a summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description and the defining claims that are presented later.
The present invention provides a topology for an RF MEMS capacitive switch that reduces the dielectric charging problem.
In an embodiment, a top electrode is displaced toward a bottom electrode in response to the application of a voltage differential between the electrodes. The top electrode may, for example, be supported as a “membrane” or “cantilever” to provide resilience to urge the top electrode to return to its deactuated position. An RF signal is coupled to one of the top or bottom electrode. A patterned dielectric material provides a plurality of posts that support one or more contact surfaces that prevent the top electrode from contacting the bottom electrode when displaced. In different embodiments, the contact surfaces are the top surface of a cylindrical post, the side surfaces of a conically-shaped post, contact pads supported by undercut posts or a dielectric layer supported by the multiple posts. A plurality of holes in the second electrode is aligned to the plurality of posts, respectively. When displaced, the top electrode contacts the one or more contact surfaces around the plurality of holes so that each hole overlaps at least a central portion of the post to which the hole is aligned. By selecting the hole size such that the top electrode appears to be approximately a continuous conductive sheet at the frequency of the RF signal, the alignment of the holes to the posts reduces the amount of trapped charged without lowering the capacitance. In different embodiments, the post diameter may be smaller than the hole diameter so that the overlap is complete, in which case trapped charge is largely eliminated. In different embodiments, the top electrode may only contact the insulating structure in annular rings around each hole to reduce the contact area, thus reducing environmental stiction problems.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
a-1d, as described above, are different views of an existing RF MEMS capacitive switch in which insulating posts are positioned orthogonal to the vent holes to maintain the capacitance ratio of the switch while preventing the flexible top electrode from contacting the bottom electrode;
a is a plot of the relationship between the cutoff frequency at which the RF signal sees a continuous conductive sheet and below it sees a reduced capacitive area and
a-3d are different views of an embodiment of an RF MEMS capacitive switch in which the dielectric posts are aligned to holes in the top electrode to maintain the capacitance ratio of the switch while reducing trapped charge;
a-4c are different views of another embodiment of an RF MEMS capacitive switch in which conically-shaped posts are aligned to the holes;
a-5c are different views of an RF MEMS capacitive switch in which the post supports a contact pad and the post is undercut to have a smaller diameter than the aligned hole to substantially eliminate trapped charge;
a and 6b are different views of an RF MEMS capacitive switch in which multiple posts support a dielectric layer, each post being under cut to have a smaller diameter than its aligned hole to substantially eliminate trapped charge; and
a-7g are section views of an embodiment of a process for fabricating the RF MEMS capacitive switch shown in
The present invention describes a topology for an RF MEMS capacitive switch that reduces the dielectric charging problem without affecting the capacitance ratio of the switch.
In the design of MEMS capacitive switches, a traditional design goal is to try to maximize the capacitance ratio of the switch, which is the ratio of the capacitance between the top and bottom electrodes in the actuated state to the corresponding capacitance in the deactuated state. In an effort to maximize the capacitance in the actuated state, pre-existing MEMS switch designs attempt to position the top electrode as close as possible to the conductive part in the actuated state of the switch, which in turn means that the dielectric material separating them needs to be relatively thin e.g. a few hundred Angstroms thick. Additionally, the pre-existing MEMS switch designs attempt to maximize the amount of dielectric material separating the electrodes, which in the case of “posts” has meant spacing the posts away from the vent holes.
Referring now to
Alignment of the holes to the underlying posts produces an overlap of each hole to at least a central portion of the post to which it is aligned. Ignoring minor DC fringing fields, there are no DC electric field lines between the top and bottom electrodes within the overlap. This reduces DC or low frequency charge transport into the dielectric, hence reduces trapped charge. Note that RF frequencies do not charge the dielectric due to the time constants required for charging. In some embodiments, the posts may be under cut so that the hole overlaps the entire post. Again ignoring minor DC fringing fields, this structure should completely cut-off DC charge transport into the dielectric, eliminating trapped charge altogether. In different embodiments, the hole/post alignment also reduces the contact area, thus reducing environmental stiction problems.
An RF MEMS capacitive switch aligns and sizes holes (such as the existing vent holes) in one of its electrodes to its insulating posts to reduce trapped charge without affecting the capacitance ratio of the switch. When displaced, the electrode contacts the posts' one or more contact surfaces around the plurality of holes so that each hole overlaps at least a central portion of the post to which the hole is aligned. By selecting the hole size such that the top electrode appears to be approximately a continuous conductive sheet at the frequency of the RF signal, the alignment of the holes to the posts reduces the amount of trapped charged without lowering the capacitance. In different embodiments, the post diameter may be smaller than the hole diameter so that the overlap is complete, in which case trapped charge is largely eliminated.
Without loss of generality, various embodiments of the invention illustrating the alignment of electrode holes with dielectric posts in a “membrane” type of RF MEMS capacitive switch will be described. One of ordinary skill in the art will understand that the alignment of electrode holes with dielectric posts may be incorporated into other types of MEMS capacitive switches without departure from the scope of the present invention.
Referring now to
Switch 100 includes a silicon semiconductor substrate 102 having on an upper side thereof an oxide layer 104. Although the substrate 102 is a made of silicon in this disclosed embodiment, it could alternatively be made of some other suitable material, such as gallium arsenide (GaAs), or a suitable alumina. Similarly, the oxide layer 104 is silicon dioxide in this disclosed embodiment, but could alternatively be some other suitable material. Two posts 106 and 108 are provided at spaced locations on the oxide layer 104, and are each made of a conductive material. In this embodiment the posts are made of gold, but they could alternatively be made of some other suitable conductive material. An electrically conductive bottom electrode 110 serves as a transmission line, and is elongated in a direction perpendicular to the plane of
A conductive membrane 114 extends between the upper ends of the posts 106 and 108. In the disclosed embodiment, the membrane 114 is made of a known aluminum alloy, and in fact could be made of any suitable material that is commonly used to fabricate membranes in MEMS switches. The membrane 114 has ends 116 and 118, which are each fixedly supported on the top portion of a respective one of the posts 106 and 108. The membrane 114 has, between its ends 116 and 118, a central portion 120 that is disposed directly above the electrode 110 and the dielectric posts 112. Central portion 120 constitutes a top electrode. In other embodiments, the membrane may be fabricated from a non-conductive material and patterned with a conductive material to form the central portion and the top electrode. The membrane 114 is approximately planar in the view of
Conductive membrane 114 is fabricated with an array of holes 122 in central portion 120 that extend through the membrane and are aligned to underlying posts 112 so that each said hole overlaps at least a central portion 124 of the post to which the hole is aligned as shown in top views of
During operational use of the switch 100, a radio frequency (RF) signal having a frequency in the range of approximately 300 MHz to 90 GHz is caused to travel through one of the membrane 114 and the electrode 110. More specifically, the RF signal may be traveling from the post 106 through the membrane 114 to the post 108. Alternatively, the RF signal may be traveling through the electrode 110 in a direction perpendicular to the plane of the
Actuation of the switch 100 is carried out under control of a direct current (DC) bias voltage 128, which is applied between the membrane 114 and the electrode 110 by a control circuit of a type known in the art. This bias voltage can also be referred to as a pull-in voltage (Vp). When the bias voltage is not applied to the switch 100, the membrane 114 is in the position shown in
In order to actuate the switch 100, a DC bias voltage (pull-in voltage Vp) is applied between the electrode 110 and the membrane 114. This bias voltage produces charges on the membrane 114 and on the electrode 110, which in turn produce an electrostatic attractive force that urges the central portion 120 of the membrane 114 toward the electrode 110. This attractive force causes the membrane 114 to flex downwardly, so that its central portion 120 moves toward the electrode 110. The membrane 114 flexes until its central portion 120 engages the top contact surfaces 113 of dielectric posts 112 in annular rings 126, as shown in
Once the membrane 114 has reached the actuated position shown in
While the membrane 114 is in the actuated position of
The electric field formed by the DC bias voltage is not present in the central portion 124 of the dielectric post 112 formed by the overlap of hole 122 with the dielectric post 112. Consequently, there is less total area of physical contact through which electric charge from the membrane 114 can pass, and this in turn reduces the amount of charge that can tunnel into and become trapped in the dielectric posts 112. This means that the rate at which trapped charge can build up in the dielectric posts 112 is substantially lower for the switch of
As a result, it takes much longer for the switch 100 to reach a state where the amount of trapped charge in the dielectric posts can attract the membrane 114 with a force sufficiently large to prevent the switch 100 from deactuating when the DC bias voltage (pull-in voltage Vp) is terminated. Therefore, the effective operational lifetime of the switch 100 is substantially longer than for pre-existing switches.
A secondary advantage of the aligned hole/post switch topology is that, by reducing the total area of physical contact between the membrane 114 and the dielectric posts 112, there is a reduction in Van Der Walls forces which tend to cause attraction between the membrane 114 and dielectric posts 112, and which thus resist movement of the membrane 114 away from the dielectric posts 112. This “environmental” stiction simply compounds the trapped charge stiction.
In order to deactivate the switch 100, the control circuit terminates the DC bias voltage (pull-in voltage Vp) that is being applied between the membrane 114 and the electrode 110. The inherent resilience of the flexible membrane 114 produces a relatively strong restoring force, which causes the central portion 1120 of the membrane to move upwardly away from the dielectric posts 112 and the electrode 110, until the membrane reaches the position shown in
Referring now to
In different embodiments, the posts support contact surfaces that provide the surface area to contact the membrane and the holes to prevent the membrane from contacting the bottom electrode. The posts themselves may be fabricated with a diameter that is smaller than the aligned hole diameter. This “undercutting” of the post causes the hole to overlap the entire post. As a result, the electric field lines produced by the DC bias voltage (ignoring fringing fields) do not overlap the post, in which case trapped charge is largely eliminated. As will be described below, this may be achieved by undercutting the posts shown in
Referring now to
Referring now to
Referring now to
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.