The present invention relates to implantable medical devices. The present invention relates more particularly to a method and apparatus for reducing the effects of electromagnetic fields applied to medical devices including a pulse generator and a lead system.
Patients who have been implanted with a medical device including a pulse generator and a lead system, such as a cardiac pacemaker or a defibrillator, are sometimes subjected to electromagnetic energy. A magnetic resonance imaging (MRI) procedure is one example of a procedure where a patient is subjected to electromagnetic energy. An MRI uses a powerful magnetic field, radiofrequency (RF) waves, and a rapidly changing magnetic field to demonstrate whether or not there is an injury or some disease process present. MRI is an efficient technique used in the diagnosis of many disorders, including neurological and cardiac abnormalities and other diseases. MRI has achieved prominence in both the research and clinical arenas. It provides a non-invasive method for examining internal body structures and functions. Because MRI has become such a useful diagnostic tool, it now is used extensively in hospitals and clinics around the world.
One problem associated with MRI scanning of a patient having a pulse generator and lead system is that the RF excitation output from the MRI scanner can be coupled into a lead conductor and then delivered as current out of the lead at the interface between a lead electrode and body tissue. The current density at the lead electrode can be sufficient to cause appreciable current loss in the body tissue, resulting in heat generation. This RF-induced heating may cause tissue damage at the electrode/tissue interface, as well as negatively affect performance of the medical device.
One method of reducing RF-induced heating at an electrode/tissue interface is the inclusion of an RF choke component near the electrode, generally at a distal end of the lead. Such RF choke components are typically insulated coils having inductive and capacitive effects that reduce the flow of current. The RF choke component thus acts as an electromagnetic filter and/or trap that blocks RF excitation currents from flowing through the electrode. Another method of reducing RF-induced heating at an electrode/tissue interface is shielding the lead conductor from RF energy.
Current devices and methods for reducing RF-induced heating in pulse generator and lead systems require additional lead components or materials, and therefore increase the cost and bulk of the lead system. Thus, there is a need in the art for an RF choke assembly that minimizes the number of additional components and materials. There is a further need in the art for an RF choke assembly that does not significantly increase the cost and bulk of the lead system.
In one aspect, a lead assembly for an implantable medical device includes a lead body having a first portion and a second portion. The first portion adapted for coupling to a pulse generator and the second portion is adapted for implantation. First and second co-radial conductive coils are positioned within the lead body and electrically isolated from each other. The first and second conductive coils include a first and second number of coil turns. The first and second number of coil turns include a number of matched turns and a number of unmatched turns, and the number of unmatched turns is less than approximately 2.0% of the total number of unmatched and matched turns. At least one capacitor element is connected in parallel with the first conductive coil. First and second electrodes are located at the second portion and respectively coupled to the first and second conductive coils.
In another aspect, a lead assembly for an implantable medical device includes a lead body having a first portion and a second portion. The first portion is adapted for coupling to a pulse generator and the second portion is adapted for implantation. First and second co-radial conductive coils are positioned within the lead body and electrically isolated from each other. The first and second conductive coils include a first and second number of coil turns, and the first and second number of coil turns include a number of matched turns and a number of unmatched turns. The number of unmatched turns is less than approximately 2.0% of the total number of unmatched and matched turns. A capacitor is coupled between the first and second conductive coils. First and second electrodes located at the second portion are respectively coupled to the first and second conductive coils.
In a further aspect, a lead assembly for an implantable medical device includes a first portion and a second portion. The first portion is adapted for coupling to a pulse generator and the second portion is adapted for implantation. A conductor is positioned within the lead body and comprises a filar including first and second conductive members. A first electrode is located at the second portion and coupled to the first conductive member, and a second electrode is located at the second portion and coupled to the second conductive member.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
The first and second conductive members 32, 34 are insulated from one another. Both the first and second conductive members 32, 34 have an insulative or non-conductive coating 40.
The lead assembly 14 may further include a grounded electromagnetic shield 42 over one or both of the first and second conductive members 32, 34. The shield 42 may be formed of gold or other materials as are known in the art. Optionally, the shield 42 may be formed over the elongated body 24 (not shown). In other embodiments, the shield 42 is not present.
The lead assembly 14 further includes a choke assembly 44 located within the lumen 26 (shown in
The conductive members 32, 34 each form a plurality of coil turns 48, 50, respectively, at the choke assembly 40. The effectiveness of the choke assembly 44 is increased when the first and second conductive members 32, 34 have an equal number of coil turns 48, 50. When the number of turns 48, 50 is not equal, the difference in the number of turns 48, 50 can be approximated by calculating an unmatched turns percentage tp. As shown in the equation below, the unmatched turns percentage tp is calculated by dividing the number of unmatched turns tunmatched by the total of the number of unmatched turns tunmatched plus the number of matched turns tmatched, then multiplying by 100.
For example, a co-radial coiled region 46 having two extra turns 50 and ninety-eight matched turns 48, 50 would have an unmatched turns percentage of two (2%). This unmatched turns percentage correlates to the amount of RF leakage through the lead assembly 14 and out the electrode 38. The number of coil turns 48, 50 is substantially equivalent when the RF leakage is minimized, thereby reducing the level of tissue damage resulting from subjecting the lead assembly 14 to the RF field to an acceptable level. One of skill in the art can determine the level of RF leakage based on factors such as the wire used for the conductive members 32, 34, the dimensions of the electrode 38, and the length of the lead assembly 14.
Thus, in one embodiment of the invention, the first conductive member 32 has a substantially equivalent number of turns 48 as the second conductive member 34 has turns 50. In one embodiment of the invention, the unmatched turns percentage is less than approximately 2.0. In one embodiment, the unmatched turns percentage is less than approximately 1.6. In one embodiment, the unmatched turns percentage is less than approximately 1.5. In an alternative embodiment, the unmatched turns percentage is less than approximately 1.0. In yet another alternative embodiment, the unmatched turns percentage is less than approximately 0.5. In another alternative embodiment, the unmatched turns percentage is less than approximately 0.3. In yet another alternative embodiment, the unmatched turns percentage is less than approximately 0.2. In one embodiment, the unmatched turns percentage is 0 (i.e. the number of turns 48, 50 is the same).
In the embodiment illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
In the embodiment shown in
Although a single capacitor element 70 is shown in
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application is a Continuation of application Ser. No. 12/559,189, entitled “RF Rejecting Lead,” filed Nov. 14, 2009, which is a Continuation of application Ser. No. 11/565,219, now U.S. Pat. No. 7,610,101, entitled “RF Rejecting Lead,” filed Nov. 30, 2006, which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3614692 | Rozelle et al. | Oct 1971 | A |
4131759 | Felkel | Dec 1978 | A |
4135518 | Dutcher | Jan 1979 | A |
4404125 | Abolins et al. | Sep 1983 | A |
4484586 | McMickle et al. | Nov 1984 | A |
4493329 | Crawford et al. | Jan 1985 | A |
4643203 | Labbe | Feb 1987 | A |
4869970 | Gulla et al. | Sep 1989 | A |
5056516 | Spehr | Oct 1991 | A |
5217010 | Tsitlik et al. | Jun 1993 | A |
5222506 | Patrick et al. | Jun 1993 | A |
5231996 | Bardy et al. | Aug 1993 | A |
5243911 | Dow et al. | Sep 1993 | A |
5246014 | Williams et al. | Sep 1993 | A |
5330522 | Kreyenhagen | Jul 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5387199 | Siman et al. | Feb 1995 | A |
5425755 | Doan | Jun 1995 | A |
5456707 | Giele | Oct 1995 | A |
5483022 | Mar | Jan 1996 | A |
5522872 | Hoff | Jun 1996 | A |
5522875 | Gates et al. | Jun 1996 | A |
5554139 | Okajima | Sep 1996 | A |
5574249 | Lindsay | Nov 1996 | A |
5584873 | Shoberg et al. | Dec 1996 | A |
5599576 | Opolski | Feb 1997 | A |
5618208 | Crouse et al. | Apr 1997 | A |
5760341 | Laske et al. | Jun 1998 | A |
5800496 | Swoyer et al. | Sep 1998 | A |
5810887 | Accorti, Jr. et al. | Sep 1998 | A |
5935159 | Cross, Jr. et al. | Aug 1999 | A |
5957970 | Shoberg et al. | Sep 1999 | A |
5968087 | Hess et al. | Oct 1999 | A |
6057031 | Breme et al. | May 2000 | A |
6078840 | Stokes | Jun 2000 | A |
6106522 | Fleischman et al. | Aug 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6178355 | Williams et al. | Jan 2001 | B1 |
6208881 | Champeau | Mar 2001 | B1 |
6249708 | Nelson et al. | Jun 2001 | B1 |
6256541 | Heil et al. | Jul 2001 | B1 |
6289250 | Tsuboi et al. | Sep 2001 | B1 |
6295476 | Schaenzer | Sep 2001 | B1 |
6400992 | Borgersen et al. | Jun 2002 | B1 |
6434430 | Borgersen et al. | Aug 2002 | B2 |
6456888 | Skinner et al. | Sep 2002 | B1 |
6493591 | Stokes | Dec 2002 | B1 |
6501991 | Honeck et al. | Dec 2002 | B1 |
6501994 | Janke et al. | Dec 2002 | B1 |
6510345 | Van Bentem | Jan 2003 | B1 |
6516230 | Williams et al. | Feb 2003 | B2 |
6526321 | Spehr | Feb 2003 | B1 |
6564107 | Bodner et al. | May 2003 | B1 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6721604 | Robinson et al. | Apr 2004 | B1 |
6813251 | Garney et al. | Nov 2004 | B1 |
6850803 | Jimenez et al. | Feb 2005 | B1 |
6854994 | Stein et al. | Feb 2005 | B2 |
6925334 | Salys | Aug 2005 | B1 |
6949929 | Gray et al. | Sep 2005 | B2 |
6978185 | Osypka | Dec 2005 | B2 |
6993373 | Vrijheid et al. | Jan 2006 | B2 |
6999821 | Jenney et al. | Feb 2006 | B2 |
7013180 | Dublin et al. | Mar 2006 | B2 |
7013182 | Krishnan | Mar 2006 | B1 |
7123013 | Gray | Oct 2006 | B2 |
7138582 | Lessar et al. | Nov 2006 | B2 |
7174219 | Wahlstrand et al. | Feb 2007 | B2 |
7174220 | Chitre et al. | Feb 2007 | B1 |
7205768 | Schulz et al. | Apr 2007 | B2 |
7363090 | Halperin et al. | Apr 2008 | B2 |
7388378 | Gray et al. | Jun 2008 | B2 |
7389148 | Morgan | Jun 2008 | B1 |
7610101 | Wedan et al. | Oct 2009 | B2 |
20020072769 | Silvian et al. | Jun 2002 | A1 |
20020111664 | Bartig et al. | Aug 2002 | A1 |
20020128689 | Connelly et al. | Sep 2002 | A1 |
20020144720 | Zahorik et al. | Oct 2002 | A1 |
20030063946 | Williams et al. | Apr 2003 | A1 |
20030083723 | Wilkinson et al. | May 2003 | A1 |
20030083726 | Zeijlemaker et al. | May 2003 | A1 |
20030092303 | Osypka | May 2003 | A1 |
20030093138 | Osypka et al. | May 2003 | A1 |
20030140931 | Zeijlemaker et al. | Jul 2003 | A1 |
20030144705 | Funke | Jul 2003 | A1 |
20030144716 | Reinke et al. | Jul 2003 | A1 |
20030144718 | Zeijlemaker | Jul 2003 | A1 |
20030144719 | Zeijlemaker | Jul 2003 | A1 |
20030144720 | Villaseca et al. | Jul 2003 | A1 |
20030144721 | Villaseca et al. | Jul 2003 | A1 |
20030204217 | Greatbatch | Oct 2003 | A1 |
20040064173 | Hine et al. | Apr 2004 | A1 |
20040088033 | Smits et al. | May 2004 | A1 |
20040122490 | Reinke et al. | Jun 2004 | A1 |
20040162600 | Williams | Aug 2004 | A1 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040267107 | Lessar et al. | Dec 2004 | A1 |
20050030322 | Gardos | Feb 2005 | A1 |
20050070972 | Wahlstrand et al. | Mar 2005 | A1 |
20050090886 | MacDonald et al. | Apr 2005 | A1 |
20050113676 | Weiner et al. | May 2005 | A1 |
20050113873 | Weiner et al. | May 2005 | A1 |
20050113876 | Weiner et al. | May 2005 | A1 |
20050222642 | Przybyszewski et al. | Oct 2005 | A1 |
20050222656 | Wahlstrand et al. | Oct 2005 | A1 |
20050222657 | Wahlstrand et al. | Oct 2005 | A1 |
20050222658 | Hoegh et al. | Oct 2005 | A1 |
20050222659 | Olsen et al. | Oct 2005 | A1 |
20050246007 | Sommer et al. | Nov 2005 | A1 |
20050283167 | Gray | Dec 2005 | A1 |
20060009819 | Przybyszewski | Jan 2006 | A1 |
20060030774 | Gray et al. | Feb 2006 | A1 |
20060041294 | Gray | Feb 2006 | A1 |
20060089691 | Kaplan et al. | Apr 2006 | A1 |
20060089695 | Bolea et al. | Apr 2006 | A1 |
20060089696 | Olsen et al. | Apr 2006 | A1 |
20060093685 | Mower et al. | May 2006 | A1 |
20060105066 | Teague et al. | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060167536 | Nygren et al. | Jul 2006 | A1 |
20060200218 | Wahlstrand | Sep 2006 | A1 |
20060229693 | Bauer et al. | Oct 2006 | A1 |
20060247747 | Olsen et al. | Nov 2006 | A1 |
20060247748 | Wahlstrand et al. | Nov 2006 | A1 |
20060271138 | MacDonald | Nov 2006 | A1 |
20060293737 | Krishnan | Dec 2006 | A1 |
20070106332 | Denker et al. | May 2007 | A1 |
20070156205 | Larson et al. | Jul 2007 | A1 |
20070179577 | Marshall et al. | Aug 2007 | A1 |
20070179582 | Marshall et al. | Aug 2007 | A1 |
20070191914 | Stessman | Aug 2007 | A1 |
20070208383 | Williams | Sep 2007 | A1 |
20080033497 | Bulkes et al. | Feb 2008 | A1 |
20080049376 | Stevenson et al. | Feb 2008 | A1 |
20080058902 | Gray et al. | Mar 2008 | A1 |
20080125754 | Beer et al. | May 2008 | A1 |
20080129435 | Gray | Jun 2008 | A1 |
20080132986 | Gray et al. | Jun 2008 | A1 |
20080243218 | Bottomley et al. | Oct 2008 | A1 |
20080262584 | Bottomley et al. | Oct 2008 | A1 |
20090099440 | Viohl | Apr 2009 | A1 |
20090099555 | Viohl et al. | Apr 2009 | A1 |
20090118610 | Karmarkar et al. | May 2009 | A1 |
20090149920 | Li et al. | Jun 2009 | A1 |
20090149933 | Ameri | Jun 2009 | A1 |
20090198314 | Foster et al. | Aug 2009 | A1 |
20090281608 | Foster | Nov 2009 | A1 |
20100010602 | Wedan et al. | Jan 2010 | A1 |
20100234929 | Scheuermann | Sep 2010 | A1 |
20100331936 | Perrey et al. | Dec 2010 | A1 |
20110087299 | Ameri | Apr 2011 | A1 |
20110093054 | Ameri | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
0897997 | Feb 2003 | EP |
W02003089045 | Oct 2003 | WO |
W02007047966 | Apr 2007 | WO |
W02007089986 | Aug 2007 | WO |
W02007118194 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110238146 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12559189 | Sep 2009 | US |
Child | 13155182 | US | |
Parent | 11565219 | Nov 2006 | US |
Child | 12559189 | US |