This relates to the field of RF signal repetition in a communications network and, more particularly, to reducing signal interference between a received signal and a repeated signal.
Wireless communications are almost ubiquitous in modern culture. People and devices are continuously transmitting and receiving information over wireless networks. Wireless networks are now located around the world, but there are still geographic areas, even in technologically developed regions, where wireless communication is difficult because there is no base station in the vicinity.
One technique for extending the coverage of a wireless network of base stations is to position repeaters in geographic locations where the network coverage is weak. A repeater is a device that receives a signal, amplifies the signal, and transmits the amplified signal. Repeaters are typically stand-alone units designed to cover a specific geographic area. Small repeaters can even be placed inside houses or offices to enhance signal strength.
Some repeaters are capable of sending and receiving signals over the same carrier frequency. A major problem with these so-called “same frequency repeaters,” is interference between signals being transmitted and signals being received over the same frequency. This interference makes both transmitted and received signals noisy.
In view of the foregoing, it would be useful to have an apparatus that could cancel interference between transmitted and received signals travelling on overlapping carrier frequency bands in a communications network. The repeater described here provides improved performance by cancelling interference over wide frequency range and at a broad instantaneous bandwidth.
A radio frequency repeater device has a receive antenna that receives a receive signal having a first frequency and a transmit antenna that transmits a repeat signal at the first frequency, the repeat signal being an amplified version of the receive signal. A signal filter communicates with the receive antenna and transmit antenna. The signal filter is operable to amplify quadrature and non-quadrature components of an input signal associated with the repeat signal to produce a filtered repeat signal. A coupler combines the receive signal with the filtered repeat signal in such a way that the filtered repeat signal cancels interference from the transmitted repeat signal in the receive signal.
In such a repeater device, the transmit antenna and receive antenna may be the same antenna.
In such a repeater device, the quadrature components of the input signal may be 90 degrees out of phase with each other and the non-quadrature components of the input signal may not be 90 degrees out of phase with each other.
In such a repeater device, the signal filter may include a signal weight adjuster adapted to impart separate signal weights to the quadrature and non-quadrature components of the input signal.
In such a repeater device, the transmitter and receiver may transmit and receive at overlapping frequencies simultaneously.
The device of claim may be a component of a cellular telephone, for example.
A cellular communications method includes, in a cellular communications network, receiving by a first mobile unit a wirelessly transmitted signal from a second mobile unit or a base station. A repeat signal is formed by the first mobile unit, the repeat signal being an amplified version of the wirelessly transmitted signal. The repeat signal is transmitted from the first mobile unit. Interference caused by transmitting the repeat signal is cancelled using a signal filter on the first mobile unit that amplifies quadrature and non-quadrature components of an input signal associated with the repeat signal to produce a filtered repeat signal.
In such a method, the wirelessly transmitted signal and repeat signal that is transmitted may have overlapping frequencies.
In such a method, the wirelessly transmitted signal may be being received at the same time the repeat is being transmitted.
In such a method, the first mobile unit may be a cellular telephone.
In such a method, the quadrature components of the input signal may be 90 degrees out of phase with each other and the non-quadrature components of the input signal may not be 90 degrees out of phase with each other.
In such a method, the signal filter may include a signal weight adjuster adapted to impart separate signal weights to the quadrature and non-quadrature components of the input signal.
In such a method, the first mobile unit is configured to transmit and receive signals at the same frequency simultaneously.
An electronic device includes a mobile unit having an antenna that transmits and receives radio signals within a cellular network. The mobile unit includes a repeater in communication with a receive signal path and transmit signal path, the repeater being operable to pass a repeated signal associated with the receive signal to the transmit signal path. The mobile unit also includes a signal filter communicating with the receive signal path and transmit signal path. The signal filter is operable to amplify quadrature and non-quadrature components of an input signal associated with the repeat signal to produce a filtered repeat signal and to cancel interference caused by the repeated signal in the receive signal path with the filtered repeat signal.
In such an electronic device, the mobile unit may transmit and receive radio signals at overlapping frequencies.
In such an electronic device, the mobile unit may transmit and receive radio signals at overlapping frequencies simultaneously.
In such an electronic device, the quadrature components of the input signal are 90 degrees may be out of phase with each other and the non-quadrature components of the input signal may not be 90 degrees out of phase with each other.
In such an electronic device, the signal filter may include a signal weight adjuster adapted to impart separate signal weights to the quadrature and non-quadrature components of the input signal.
In such an electronic device, the mobile unit may be a cellular telephone.
This disclosure describes exemplary embodiments, but not all possible embodiments of the devices and methods. Where a particular feature is disclosed in the context of a particular example, that feature can also be used, to the extent possible, in combination with and/or in the context of other examples. The devices and methods may be embodied in many different forms and should not be construed as limited to only the examples described here.
Referring to
The base station 104 is a fixed-location point of communication for cellular devices on a cellular carrier network. The base station 104 receives and transmits signals in the cellular network to cellular devices such as mobile units 200.
Mobile units 200 may be mobile communication devices such as cellular phones, tablets, computers, radios, and the like. The mobile unit 200 may include the typical hardware and software components one would find in modern mobile communication devices, such as a processor, memory, a keypad, a screen, and I/O ports, among others. In any example, the mobile unit 200 is a device capable of receiving and transmitting radio frequency wirelessly.
In some example implementations, the repeater 100 may be incorporated into a mobile unit 200, making the mobile unit 200 function as a repeater 100. This allows each mobile unit 200 in a network to serve as a repeater 100, which expands the coverage of the network as illustrated in
In the cellular network illustrated in
Referring to
A first directional coupler 426 splits the transmit signal 422 into two portions: one that passes to the transmit antenna 424 and another that passes through the signal filter 300. A filtered transmit signal 438 exits the signal filter 300 and is combined with the receive signal 434 at a second direction coupler 436. The filtered transmit signal 438 is used to cancel the interference signal from the receive signal 434.
Details of the signal filter 300 are now described by referring to
Details of an exemplary modulator 370 are now described by referring to
The filter 300 has an operational range over which it cancel an interference signal from 10 MHz or below to 6 GHz or above and it had an instantaneous bandwidth that ranges from 5 MHz or below to several hundred MHz. The signal filter 300 may achieve 30 dB or greater cancellation of the interference signal. This broad operational frequency range is possible because the modulator 370 weights signals outside of the normal quadrature operational frequency range of the 90 degree coupler.
90 degree couplers are only designed to separate quadrature signals into I and Q components over an octave bandwidth, such as 1-2 GHz for example. When the input RF signal is within the quadrature operational frequency range of the 90 degree coupler, the 90 degree coupler will divide the signal into true I and Q vector components that are 90 degrees out of phase, where the I-component is the real vector component and the Q component is the imaginary vector component. In this scenario, the modulator 370 functions as a true vector modulator. The I and Q component amplifiers 374,378 may be adjusted to apply a desired weight to each component by supplying different voltages with the signal weight adjuster 376,380.
Conventional wisdom would suggest that the operational bandwidth of modulator employing a narrow band 90 degree coupler would be no more than the operational bandwidth of the 90 degree coupler. In other words, if the 90 degree coupler can only separate a modulated signal into true 90 degrees out of phase IQ components between 1-2 GHz, one would not expect the modulator to work very well outside the 1-2 GHz range.
A particularly advantageous feature of the modulator 370 is that its operational bandwidth is much larger than the 90 degree coupler's 372 operational bandwidth. This is because the modulator 370 can also operate outside the frequency range in which the 90 degree coupler can separate quadrature signals into IQ components.
Outside the quadrature operational frequency range, it does not separate the input signal into true real and imaginary vector components; instead, it simply splits the input signal into two non-quadrature components that are not 90 degrees out of phase with each other.
Adjusting the weights of the two non-quadrature component signals via the I and Q component amplifiers 374,378 may still allow for interference signal cancellation both above and below the quadrature operational frequency range of the 90 degree coupler. By taking advantage of this functionality, the operational frequency range of the modulator 370 is expanded beyond what would be expected when using a conventional narrow-band 90 degree coupler.
As illustrated in
The filter 300 may also be used in conjunction with a single antenna system 500, such as simultaneous transmit and receive (“STAR”) antenna as illustrated in
In such an example, the interference may be cancelled by feeding a portion of the transmit signal 522 to the filter 300 to create a filtered signal 438 as discussed above. The receiver 430 then receives a combination of the receive signal 534 and filtered signal 538.
An example of a mobile unit 200 including the repeater 100 is illustrated in
The repeater 100 includes the signal filter 300 and a repeater unit 102. The repeater unit 102 may include a high gain repeater and a bandpass filter. The repeater unit 102 is coupled to the receiver side so as to receive a portion of the receive signal downstream a pre-amplifier 204. A directional coupler 206 feeds the portion of the receive signal to the repeater unit 102. The output of the repeater unit 102 feeds into a directional coupler 208, which feeds the repeat signal through an amplifier 210 upstream from the transmitter 220.
A combination of the repeat signal and transmitter signal is then fed through another directional coupler 226, which sends a portion of the combination signal through the filter 300 for cancelling the interference signal between the transmit antenna 224 and receive antenna 232 as described previously. The transmitted signal is a combination of the transmit signal and the repeat signal.
In order to provide different mobile units 200 in a network with this repeater function, it may be desirable to program each mobile unit 200 with coordination algorithms through software and/or firmware for each frequency band assignment and for mode control, timing, and other variables.
The example illustrated in
By using the signal filter, the mobile unit 200 may function as a same frequency repeater because the signal filter will cancel interference between the transmitted and received signals if the mobile unit only has a single antenna. Likewise other versions of the repeater 100 may include only a single antenna that transmits and receives. In such a case, the signal filter will cancel interference between the transmitted or repeated and received signals.
Using the signal filter 300, the devices and methods described above may be adapted to transmit and receive radio frequency signals at overlapping frequencies simultaneously. Overlapping frequencies occur when the bandwidth of one signal overlaps with the bandwidth of another signal.
This example is provided to show that the filter can be used to cancel an interference signal over a broad operational bandwidth and with a wide instantaneous bandwidth. This example is provided by way of illustration and does not limit the scope of possible embodiments.
In
In
In
In
This example shows that over the range of 10 MHz to 4700 MHz, the filter was able to cancel the interference signal very well, regardless of whether it operates on a quadrature signal or non-quadrature signal.
This disclosure describes certain example embodiments, but not all possible embodiments of the devices and associated methods. Where a particular feature is disclosed in the context of a particular embodiment, that feature can also be used, to the extent possible, in combination with and/or in the context of other embodiments. The devices and associated methods may be embodied in many different forms and should not be construed as limited to only the embodiments described here.
This claims the benefit of priority from provisional Application No. 62/509,234, filed May 22, 2017, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4475246 | Batlivala et al. | Oct 1984 | A |
4878251 | Richardson | Oct 1989 | A |
4989262 | Saito | Jan 1991 | A |
7555219 | Cox et al. | Jun 2009 | B2 |
8135339 | Ranson et al. | Mar 2012 | B2 |
8285201 | Gore et al. | Oct 2012 | B2 |
8503926 | Gainey et al. | Aug 2013 | B2 |
8571470 | Ranson et al. | Oct 2013 | B2 |
8630211 | Gainey et al. | Jan 2014 | B2 |
8725067 | Ahn et al. | May 2014 | B2 |
8755750 | Cox et al. | Jun 2014 | B2 |
8868006 | Cox et al. | Oct 2014 | B2 |
9209840 | Cox | Dec 2015 | B2 |
9628318 | Gerdes | Apr 2017 | B1 |
9692469 | Clark et al. | Jun 2017 | B1 |
9781612 | Buskgaard et al. | Oct 2017 | B2 |
20040032904 | Orlik et al. | Feb 2004 | A1 |
20040151238 | Masenten | Aug 2004 | A1 |
20100279602 | Larsson | Nov 2010 | A1 |
20110170473 | Proctor, Jr. et al. | Jul 2011 | A1 |
20110310869 | Xhafa | Dec 2011 | A1 |
20130163482 | Suzuki et al. | Jun 2013 | A1 |
20140194054 | Kim | Jul 2014 | A1 |
20150065033 | Kruglick | Mar 2015 | A1 |
20170156039 | Zhao | Jun 2017 | A1 |
20170195036 | Kwon | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2002171215 | Jun 2002 | JP |
Entry |
---|
Carusone et al.; “Analogue Adaptive Filters: Past and Present”; IEE Proc.—Circuits Devices Syst.; vol. 147, No. 1; Feb. 2000. |
Number | Date | Country | |
---|---|---|---|
62509234 | May 2017 | US |