RF signal processing in multi-antenna systems

Information

  • Patent Application
  • 20050025271
  • Publication Number
    20050025271
  • Date Filed
    July 29, 2003
    21 years ago
  • Date Published
    February 03, 2005
    19 years ago
Abstract
A method for antenna subset selection by joint processing in RF and baseband in a multi-antenna systems. Lt input data streams are generated in a transmitter for either diversity transmission or multiplexing transmission. These streams are modulated to RF signals. These signals are switched to the t branches associated with the t transmit antennas, and a phase-shift transformation is applied to the RF signals by a t×t matrix multiplication operator Φ1, whose output are t≧Lt RF signals. These signals are transmitted over a channel by t antennas. The transmitted signals are received by r antennas in a receiver. A phase-shift transformation is applied to the r RF signals by a r×r matrix multiplication operator Φ2. Lr branches of these phase shifted streams are demodulated and further processed in baseband to recover the input data streams.
Description
FIELD OF THE INVENTION

The invention relates generally to multi-antenna communication systems, and more particularly to processing RF signals transmitted through spatially correlated channels in such systems.


BACKGROUND OF THE INVENTION

Multi-antenna systems are widely considered to be the most viable way for significantly increasing the bandwidth efficiency of wireless data transmission systems. In MIMO (multiple input multiple output) systems, multiple antennas are deployed both at the transmitter and the receiver. In MISO (multiple input single output) systems, the receiver has only one antenna, and the multiple transmit antennas are used for transmit diversity. In SIMO (single input multiple output) systems, the transmitter has a single antenna, and multiple antennas are used at the receiver.


Given multiple antennas, the spatial dimension of the channel can be exploited to improve the performance of the wireless link. The performance is often measured as the average bit rate (bit/s) the wireless link can provide, or as the average bit error rate (BER), depending on the application.


Given a multi-antenna channel, a duplex method, and a transmission bandwidth, the multiple-antenna system can be categorized as narrowband or wideband (i.e., the channel is flat or frequency selective fading within the system bandwidth), and possessing either full, partial or no channel state information (CSI).


Multiple antennas provide enhanced performance. Studies show that the multiple antennas can be used to provide spatial diversity, and/or can increase the information-theoretic capacity (data rate), see, e.g., Vaughn and Anderson, Channels, propagation, and antennas for mobile communications, IEE Press, 2003, Telatar et al., “Capacity of Multi-Antenna Gaussian Channels,” European Trans. on Telecomm., Vol. 10, No. 6, pp. 585-596, November-December 1999, Winters, “On the Capacity of Radio Communication Systems with Diversity in Rayleigh Fading Environments,” IEEE J. Selected Areas Comm., 1987, and Tarokh et al., “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Trans. Inform. Theory, Vol. 44, pp. 744-765, March 1999.


However, as a disadvantage, operation with multiple RF chains increases complexity and cost. An antenna selection technique can be used to determine an optimal subset of antennas. This still yields improved performance while reducing the number of required RF chains, see Molisch et al., “Capacity of MIMO Systems with Antenna Selection,” Proc. IEEE Intl. Comm. Conf., pp. 570-574, 2001, and Gore et al., “MIMO Antenna Subset Selection with Space-Time Coding,” IEEE Trans. Signal Processing, Vol. 50, No. 10, pp. 2580-2588, October 2002.


Most prior art antenna selection techniques have focused only on selecting a subset of antennas before down-conversion and processing in baseband. This (spatial) antenna selection techniques work reasonably well under some circumstances, namely in the case that (i) the number of selected antennas is only slightly smaller than the number of available elements, and (ii) the MIMO channel is spatially uncorrelated.


However, in reality, correlated scattering at both the transmitter and receiver antenna arrays is more usual. Due to the directional transmission in the wireless environment, the signal waveforms can be highly correlated depending on the departure and arriving angles at the antennas.


The prior art antenna selection techniques that operate only in the spatial domain can have a significant degradation in performance when dealing with this correlation. Furthermore, even for weak correlations, the prior art antennas also show a significant performance loss when the number of selected antennas is considerably smaller than the number of available antennas.


Therefore, it is desired to provide an RF signal processing technique that overcomes the problems of the prior art.


SUMMARY OF THE INVENTION

The invention provides a system and method for antenna subset selection in a multi-antenna communication system based on the joint signal processing in radio frequency and baseband. The system is designed for either full diversity transmission or multiplexing transmission, in both correlated and uncorrelated channels.


The invention uses phase-shift operations in radio-frequency (RF) chains. The operations can be performed after antenna selection in the transmitter, or before antenna selection in the receiver, or both.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a multi-antenna system that uses joint RF/baseband signal processing for antenna selection according to the invention; and



FIGS. 2 and 3 are graphs comparing RF signal processing techniques.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 shows a multi-antenna system 100 that uses the antenna selection method according to the invention. In a transmitter 1, Lt data streams 101 are generated. These streams can be either different signals obtained through a space-time coder, i.e., in multiplexing transmission, or the same signal encoded with different weights, i.e., in diversity transmission. The streams are modulated 110 to passband RF signals. A selection switch 120 links these signals to Lt of the t branches 121 associated with the t transmit antennas (t≧Lt). In the new invention, the t passband branches 121 are transformed 130 by a t×t matrix operation Φ1 before they are applied to the t transmit antennas, and passed through the channel 140.


At a receiver 2, the signals are received via the channel 140 by r antennas. The received signals are transformed 150 by an r×r matrix operation Φ2, and Lr of the transformed signals are selected 160, where Lr≦r. The selected signals 161 are demodulated 170 and further processed 180 in baseband for detection of the data streams 101. The concatenation of the Lt out of t switch and the t×t matrix operation Φ1 can be viewed, and implemented, as a t×Lt matrix operation in both the transmitter and the receiver.


In order to reduce the implementation cost in radio frequency, the entries of the matrix operations usually are constrained to be pure phase shifters without power amplifiers. They can also be done just in the transmitter, or just in the receiver, e.g., by making the corresponding matrix at the other link end, Φ2 or Φ1, identity matrices.


System and Channel Model


For the description of the operating principles of the invention, we use a well known channel model, see Shiu et al., “Fading Correlation and Its Effect on the Capacity of Multi-element Antenna Systems,” IEEE Trans. Commun., Col. 48, pp. 502-513, March 2000, Bölcskei et al., “Performance Analysis of Space-Time Codes in Correlated Rayleigh Fading Environments,” Proc. Asilomar Conf. Signals, Syst. Comput., pp. 687-693, November 2000, Gore et al., “MIMO Antenna Subset Selection with Space-Time Coding,” IEEE Trans. Signal Processing, Vol. 50, No. 10, pp. 2580-2588, October 2002. However, we note that the invention is in no way dependent on the channel model.


The model for the channel transfer function H is expressed as:

H=R1/2WT1/2,  (1)

where W is a Rayleigh fading matrix with i.i.d. complex Gaussian entries ˜NC(0,1). The correlation matrices R and T denote receive and transmit correlations, respectively. The sizes of R and T are r×r and t×t, respectively. This model is usually valid when assuming independent transmit and receive correlations.


To facilitate the performance analysis, we introduce the singular value decomposition (SVD) of the transfer function matrix H: H=UΣV, where U and V are unitary matrices representing the left and right singular vector spaces of H, respectively; and Σ is the diagonal matrix consisting of all the singular values of H. For convenience we denote λi(H) as the i-th largest singular value of matrix H, and {right arrow over (u)}i(H), {right arrow over (v)}i(H) are the left and right singular vectors of H with respect to λi(H). Here we use ‘*’ to denote the conjugate transpose of a vector or matrix (It reduces to the complex conjugate for a scalar).


Diversity Transmission


Full-Complexity (FC) MRT/MRC Scheme


The system 100 with diversity transmission can be expressed by a linear equation 1.

{right arrow over (x)}(k)=H{right arrow over (v)}s(k)+{right arrow over (n)}(k)  (3)

where s(k)εC is the transmitting stream, {right arrow over (x)}(k)εCr is the set of sample stacks of the complex-valued receiver data sequence. The total transmission power is constrained to P. The thermal noise {right arrow over (n)}(k)εCr is a white i.i.d Gaussian random process with independent real and imaginary parts and variance σn2Ir, and {right arrow over (v)} is a t-dimensional transmitter weighting vector satisfying ∥{right arrow over (v)}∥=1. At the receiver, the received signals {right arrow over (x)} are weighted with complex weights {right arrow over (u)}* and added, to give a soft estimate of the transmitted symbol stream.


Without antenna selection, the information stream s(k) is estimated by performing a linear combination of all the r observation streams with a coefficient vector {right arrow over (u)}* at the receiver by:

ŝ(k)={right arrow over (u)}*H{right arrow over (v)}s(k)+{right arrow over (u)}*{right arrow over (n)}(k).  (4)

The estimate SNR after combining is
a.ɛ[u*Hvs(k)]2u*n(k)2=ρu*Hv2u*2,(5)

where the nominal SNR is p=P/σn2. To maximize the estimate SNR, maximal ratio transmission and maximal ratio combining are used, i.e., {right arrow over (u)}({right arrow over (v)}) are the singular vectors in U(V) corresponding to the largest singular value λ1(H). The resulting estimated SNR is then pλ12(H).


Conventional Hybrid Selection (HS) MRT/MRC Method


When Lr out of the r receive antennas are selected and combined, each selection option corresponds to a Lr×r selection matrix on the transfer function, which extracts Lr out of the r rows of the matrix H that are associated with the selected antennas. We denote Sr as the set of all such selection matrices. Similarly, an Lt out of t selection in the transmit end can be represented by a t×Lt matrix, and the set of the transmit selection matrices are denoted by S. For any selection option (S1εSt,S2εSr), an optimal SNR is achieved via a similar MRT and MRC on the Lt transmit and Lr receive branches respectively:
maxuCLrmaxv=1ρu*S2HS1v2u2=ρλ12(S2HS1).(7)

The HS-MRC scheme selects the optimal antenna subset selection matrices (S1, S2) among all the elements in St and Sr that maximize the estimate SNR
above:SNRHS=maxS2SrmaxS1Stρλ12(S2HS1).(9)


FFT-Based Method (FFTS)


To cope with the highly correlated MIMO channels, the operation (Φt or Φr) 150 can be a fast Fourier transform matrix of the form:
i.Φr=1r[1111-jωr-j(r-1)ωr1-j(r-1)ωr-j(r-1)2ωr],

where Wr=2π/r. The matrix is normalized to preserve the noise level. Via a similar MRT/MRC on the selected branches after the FFT, the optimal estimate SNR is:
SNRFFTS=maxS2SrmaxS1Stρλ12(S2ΦrtS1).(9)


Phase-Shift & Selection Method (PSS)


A more general design in our invention is to allow phase-shift-only entries in the transform Φ1 130 (and/or Φ2 150). In this case, the transform matrix 130 (150) and the selection 120 (160) can be integrated into one t×Lt (or Lr×r) matrix with phase-shift-only entries. The set of all such transmit (or receive) matrices is denoted by Ft (or Fr). In this method, with the two phase-shift matrices F1εFt and F2εFr, the linear combining is performed on the virtual channel F2HF1. As above, the SNR for the optimal choice of (F1, F2) is
SNRPSS=maxuCLrmaxvCLtmaxF1FtmaxF2Frρu*F2HF1v2u*F22F1v2.(11)

When Lt≧2 and Lt≧2, the optimal solution for equation (10) can be derived in a closed form. Denote the elements in F2 as [F2]m,n=exp(jφm,n) and the singular vector of H as {right arrow over (u)}1*(H)=[β11e−jφ11 . . . βr1e−jφr1], an optimum choice of the phases in F2 is
i.ϕ1,i=-φi,1-cos-1βi,12+βmaxβminβi,1(βmax+βmin);ϕ2,i=-φi,1+cos-1βi,12-βmaxβminβi,1(βmax-βmin).(11)

where

βmax=max1irβi1andβmin=min1irβi1.

The other rows of F2 can be arbitrarily designed. The optimum phase shifters in F1 are derived in a similar fashion with {right arrow over (u)}1*(H) replaced by {right arrow over (v)}1*(H). With this choice, the PSS can achieve the same SNR as the FC-MRT/MRC.


When either Lr=1 or Lt=1 (or both), a closed-form solution to (10) in generally does not exist; we provide a sub-optimal solution which closely approximates the maximization in (10):

φ1i=−φr1.  (12)


Multiplexing Transmission


Full-Complexity (FC) Scheme


The system 100 with multiplexing transmission is expressed by

{right arrow over (x)}(k)=H{right arrow over (s)}(k)+{right arrow over (n)}(k),  (13)

where s(k)εCr is now a t-dimensional vector denoting the different transmitting sequences. The assumptions on the channel and noise are the same as the diversity transmission case. To support multiple data streams, capacity is an important measure for the capacity of the system.


Without antenna selection, the information rate supported by the original channel can be maximized using a “water-filling” power allocation. The capacity of the original system is
CFC=i=1min(t,r)[log2ρtμλi2(H)]+,(14)

where [a]+ is defined as max(a,0 and μ is the constant satisfying
i=1min(t,r)[μ-tρλi2(H)]+=t.


Conventional Hybrid Selection (HS) Method


When Lt (Lr) out of the t (r) transmit (receive) antennas are selected, the maximum capacity offered by the conventional antenna selection scheme is

CHS=maxS1StmaxS2Sri=1κ(S2HS1)[log2ρtμλi2(S2HS1)]+,

where μ depends on (S1,S2) and satisfies
i=1min(Lt,Lr)[μ-tρλi2(S2HS1)]+=t.


FFT-based Method (FFTS)


Similar to the FFTS in diversity transmission case, the FFT matrix is inserted in the RF chains together with the selection switch. The optimum selection with FFT can deliver a capacity of

CFFTS=maxS1StmaxS2Sri=1min(Lt,Lr)[log2ρtμλi2(S2ΦrHΦtS1)]+,(16)

with the constraint
i=1min(Lt,Lr)[μ-tρλi2(S2ΦrHΦtS1)]+=t.


Phase-Shift & Selection Method (PSS)


For PSS method, we use the same notations as before
CPSS=maxF1FtmaxF2Fri=1L[log2ρtμλi2(F2HF1)]+


Partial CSI


In the case that the channel is only partially estimated, the invention provides an alternative method. In this case, there is no knowledge about the instantaneous channel state, but rather only about the state of the channel averaged over a time interval, e.g., typically, but not restricted to, several milliseconds to several hundreds of milliseconds. This case typically occurs for the transmitter in a frequency-division duplexing system,


In that case, the goal of the transformation is to transform the transmit signal in such a way that on average the signals after the selection process has good properties, e.g., high capacity.


The expected value capacity that can be achieved that way is
E{CPSS}=maxF1FtmaxF2FrE{i=1L[log2ρtμλi2(F2HF1)]+}.

The expected value of the capacity is only one possible criterion. Other criteria result in different values for the capacity matrix.


Effect of the Invention



FIG. 2 compares the SNR gain of the four methods described above as a function of antenna spacing with diversity transmission. The parameters in the system are t=8, r=8, Lt=1, Lr=2. For large correlation, i.e., small antenna spacing, the FFTS method in the invention has a considerably larger SNR gain over the traditional HS-MRT/MRC method. In general, regardless of the correlation level in the channel, the PPS method in the invention can outperform both prior art selection methods. In fact with two or more RF branches, the PSS method can achieve the SNR gain of a full-complexity method.



FIG. 3 displays the 5% outage capacity of the four methods for multiplexing transmission. The system parameters are t=3, r=8, Lt=3, Lr=3, p=20 db. A similar conclusion can be drawn from the plots: the FFTS shows a performance improvement for strongly correlated channels while the PPS works well for both strong and weak correlations.


This invention is described using specific terms and examples. It is to be understood that various other adaptations and modifications may be made within the spirit and scope of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.

Claims
  • 1. A method for processing RF signals in a multi-antenna systems, comprising: generating Lt input data streams in a transmitter; modulating the Lt weighted input data streams to RF signals; switching the RF signals to t≧Lt RF branches; applying a phase-shift transformation to the RF signals by a t×t matrix multiplication operator Φ1, whose output are t RF signals; transmitting the t RF signals over a channel by t transmit antennas; receiving the transmitted signals by r antennas in a receiver; applying a phase-shift transformation to the r RF signals by a r×r matrix multiplication operator Φ2; selecting Lr branches from the r streams; demodulated the Lr signal streams; and processing in baseband to recover output data streams corresponding to the input data streams.
  • 2. The method of claim 1, in which each of the Lt input data stream has a weight, and further comprising: summing the Lr weighted data streams before the demodulating and decoding.
  • 3. The method of claim 1, in which the Lt input data streams are generated by a space-time block coder.
  • 4. The method of claim 1, in which the Lt input data streams are generated by a space-time trellis coder.
  • 5. The method of claim 1, in which the input data streams are space-time layered structures.
  • 6. The method of claim 1, in which t=Lt, and the matrix Φ1 is an identity matrix.
  • 7. The method of claim 1, in which r=Lr, and the matrix Φ2 is an identity matrix.
  • 8. The method of claim 1, in which entries of the matrix Φ1 have constant modulus phase-only terms.
  • 9. The method of claim 1, in which entries of the matrix Φ2 have constant modulus phase-only terms.
  • 10. The method of claim 1, in which entries of the matrices Φ1 and Φ2 have constant modulus phase-only terms.
  • 11. The method of claims 8, in which the phase-only terms adapt to an estimate of an instantaneous channel state.
  • 12. The method of claim 8, in which the phase-only terms adapt to an estimate of an average channel state.
  • 13. The method of claim 1, in which the matrix Φ1 is a fast Fourier transform matrix.
  • 14. The method of claim 1, in which the matrix Φ2 is a fast Fourier transform matrix.
  • 15. The method of claim 1, in which the matrices Φ1 and Φ2 are fast Fourier transform matrices.