This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-213087, filed on Sep. 15, 2009; the entire contents of which are incorporated herein by reference.
The embodiments described in this specification relate to an RF tag reader and writer for communicating with an RF tag in a non-contact manner and to an antenna thereof.
The RFID (Radio Frequency Identification) system is attracting attention and, for example, is being introduced in the distribution field and the like. The RFID system includes an IC chip and an antenna, and is constituted by an RF tag (also referred to as a wireless tag or an RFID tag) attached to goods and an RF tag reader and writer (hereinafter, also simply referred to as a reader and writer) for reading information stored in a memory within the IC chip of the RF tag in a non-contact manner and writing information in the memory within the IC chip of the RF tag in a non-contact manner.
In regard to processing by the RFID system, a collective information reading process from a plurality of RF tags (hereinafter, referred to as collective reading) in regard to counting inventory in a shop or the like can be exemplified. At this time, the reader and writer radiates radio waves in a range up to several meters, executes communication with unspecified RF tags each of which is attached to each of a plurality of commercial goods, and collectively reads the information stored in the respective RF tags. In addition, in regard to other processing by the RFID system, it is possible to exemplify reading and writing processes with respect to one or a plurality of specific RF tags (hereinafter, both of which are referred to as selective reading and selective writing, respectively, and are together referred to as selective communication). At this time, the reader and writer selectively reads information from specific RF tags and selectively writes information in the RF tags.
Here, there are some cases where selective writing or the like is performed in a circumstance in a shop or the like, in which there are a number of commercial goods with the RF tags attached. In such a circumstance, information may be written in an RF tag different from an RF tag in which a user desires to write the information, as a result of the communication with a nearby RF tag by mistake. Accordingly, depending on the operations, the user was required to use both a reader and writer for collective reading and a reader and writer for selective communication, which has a smaller output of the radio wave transmission and has a narrower range of the directionality than that of the reader and writer for collective reading. In addition, when performing selective communication, the user was required to, for example, keep RF tags which were not the communication targets away from the vicinity of the antenna device of the reader and writer.
According to a first embodiment, the RF tag reader and writer includes an antenna device and an antenna switching control unit. The antenna device includes a first radiation element and a second radiation element which is larger than the first radiation element. The antenna device radiates radio waves, which are for communicating only with the RF tags located in a region in the vicinity of the first radiation element, from the first radiation element and radiates radio waves, which are for communicating with the RF tags located in a range which is broader than that of the first radiation element, from the second radiation element. For example, the antenna device radiates radio waves with an intensity distribution, which is capable of communicating only with the RF tags located in the region in the vicinity of the first radiation element, from the first radiation element and radiates radio waves with an intensity distribution, which is capable of communicating with the RF tags located in a range which is broader than that of the first radiation element, from the second radiation element. In addition, in accordance with a user's operation, the antenna switching control unit selects and switches to perform radiation of radio waves by either the first or second radiation elements.
Hereinafter, the description will be made of the embodiments with reference to the drawings. The following description will be made while exemplifying an identification ID as the information to be read from or written in the RF tags. In addition, the description will be made while using collective reading, which is used in operations such as counting inventory and the like, as an example of collective communication.
In the first embodiment, at this time, the reader and writer 100 can radiate radio waves with an intensity distribution, which is capable of communicating only with the RF tags located in the region in the vicinity of the first radiation element 14, from the first radiation element 14 by adjusting (changing) the transmission output. In addition, the second radiation element 15 can radiate radio waves with an intensity distribution which is capable of communicating with the RF tags located in a range which is broader than that of the first radiation element 14 by adjusting the transmission output.
First, the description will be made of a configuration of hardware provided in the reader and writer main body 30. As shown in
The control unit 31 has a function for performing various processes in the reader and writer 100, such as communication with the RF tags or communication with external devices such as a personal computer (not illustrated) and the like via a network, by executing a program stored in a storage unit 311, which will be described later, based on the input from a user. For example, the wireless unit 33 is controlled in accordance with a communication protocol such that an identification ID, which is obtained by a personal computer via the interface unit 39 which will be described later or which is input by the user via the input unit 35 which will be described later, is transmitted from the antenna device 10 to the RF tags via radio waves. In addition, the control unit 31 includes the storage unit 311, an antenna switching control unit 313, and a transmission output control unit 315, which will be described later.
The storage unit 311 stores output information which is information to be used by the transmission output control unit 315, which will be described later, regarding a magnitude of the transmission output corresponding to the type of processing, collective reading, selective reading or selective writing, in addition to the obtained identification ID and the communication protocol for transmitting the identification ID via radio waves (a communication protocol for RF tags complying with ISO18000-6, for example).
The antenna switching control unit 313 switches the radiation element, from which the radio waves are radiated, between the first radiation element 14 and the second radiation element 15 in accordance with a process to be performed (in other words, performing selection of from which radiation element the radio waves are radiated). Specifically, the antenna switching control unit 313 controls the wireless unit 33 so as to cause the second radiation element 15 to radiate radio waves when performing collective reading. In addition, the antenna switching unit 313 controls the wireless unit 33 so as to cause the first radiation element 14 to radiate radio waves when performing selective communication.
The transmission output control unit 315 controls the wireless unit 33, which will be described later, to causes the antenna device 10 to radiate radio waves at a transmission output based on the transmission output information stored in the storage unit 311.
Here, according to the first embodiment, when the transmission output control unit 315 controls the wireless unit 33, which will be described later, based on the output information relating to selective reading and selective writing (the selective reading output information and the selective writing output information), the transmission output control unit 315 causes the antenna device 10 (specifically, the first radiation element 14) to radiate radio waves at a transmission output capable of communicating only with the RF tags positioned in the region in the vicinity of the first radiation element 14. In addition, when controlling the wireless unit 33 based on the collective reading output information relating to collective reading, the transmission output control unit 315 causes the antenna device 10 (specifically, the second radiation element 15) to radiate radio waves at a transmission output greater than that for performing selective reading or selective writing.
Specifically, the control unit 31 of the first embodiment can be configured with a CPU, a RAM, and a ROM mounted on the reader and writer main body 30.
In addition, a suitable value for the transmission output varies depending on the type of the RF tags, and the communication circumstances where the processes are performed (for example, material of walls, material of shelves onto which the RF tags are being mounted, material of goods to which the RF tags are attached, density of the RF tags, and the like) in addition to the process type such as collective reading and selective communication. Accordingly, when the transmission output is preset for the respective processes, it is preferable that plural pieces of output information are stored for one process as in the first embodiment since it is possible to more suitably set the transmission output. When the explanation is made while exemplifying collective reading, three types of output information indicating different transmission outputs of collective reading output information A, B, and C are stored in the first embodiment.
The wireless unit 33 is a hardware unit with a function of communicating with the RF tags via the antenna device 10.
Here, if the RF tags are passive tags with no battery, the wireless unit 33 first amplifies a non-modulated carrier with a power amplifier 331, outputs electromagnetic waves from the antenna via a directional coupler 332, and activates the RF tags. When transmitting data to the RF tags, the wireless unit subjects the signal encoded in accordance with a communication protocol to an amplitude modulation at an amplitude modulator 333, then amplifies the signal with the power amplifier 331, subsequently outputs electromagnetic waves from the antenna via the directional coupler 332, and thereby transmits the data. In addition, when a signal is received from the RF tags, the RF tags control (back scatter) impedance at the end of the antenna while the reader and writer 100 is transmitting the non-modulated carrier, thereby the reflection state is changed, and the antenna device of the reader and writer 100 detects the change. The directional coupler 332 performs orthogonal demodulation on the received electromagnetic wave signal, and synchronous clock generation units I (334) and Q (335) generate a synchronous clock. Then, preamble detection units I (336) and Q (337) detect a predetermined preamble to thereby detect a head of the data, and decoding units I (338) and Q (339) perform decoding to obtain the received data. In addition, error detection units I (341) and Q (342) are configured to detect the existence of errors using an error detection sign.
The input unit 35 is a hardware unit for a user to input instructions to the reader and writer 100, and specifically, can be configured with buttons (keys) capable of inputting instructions by being pressed, a touch pad, and the like.
The display unit 37 is a hardware unit which can be used to show a communication result with the RF tags to the user and to encourage the user to input instructions, and specifically, can be configured by an LCD (Liquid Crystal Display) or the like. In addition, the display unit 37 may be configured as a graphical display with a touch panel sensor mounted thereon, and the input unit 35 and the display unit 37 may be integrated.
The interface unit 39 is a hardware unit for communicating with an external device such as a personal computer, which stores identification IDs, via network.
Next, the description will be made of the antenna device 10 of the first embodiment.
As shown in
The first radiation element 14 and the second radiation element 15 are plate-shaped radiation elements, each of which has a substantially rectangular shape in a plan view, is constituted by a conductive material such as aluminum, copper or the like, and is disposed substantially parallel to each other. The earth conductor 16 is constituted by a conductive material such as aluminum, copper or the like, and disposed between the first radiation element and the second radiation element. Moreover, the first dielectric layer 17 is disposed between the first radiation element 14 and the earth conductor 16, and the second dielectric layer 18 is disposed between the second radiation element 15 and the earth conductor 16. That is, the composite antenna 20 includes a first patch antenna having the first radiation element 14 and a second patch antenna having the second radiation element 15.
In the first embodiment, it is possible to integrate the first radiation element and the second radiation element and commonly use the earth conductor by configuring the composite antenna 20 provided in the antenna device 10 as mentioned above. Accordingly, it is possible to achieve the reduction in the size and the weight of the antenna device 10 compared to other configurations where two patch antennas are provided.
Here, in the first embodiment, the first dielectric layer 17 has a greater relative permittivity than that of the second dielectric layer 18, and the outer shape of the second radiation element 15 is larger than that of the first radiation element 14. According to the antenna device 10 of the first embodiment with a configuration in which the radiation elements are provided which have outer shapes with different sizes, it is possible to concentrate the radio waves radiated from the antenna device 10 on a closer vicinity as shown by a broken line in
In addition, in the first embodiment, the relative permittivity of the first and second dielectric layers 17 and 18, and the outer shapes and the sizes of the first and second radiation elements 14 and 15 are not particularly limited, and can be appropriately set by those skilled in the art based on a known method. For example, the description will be made of an example in which the relative permittivity of the first dielectric layer 17 (εr1) is approximately 4, the relative permittivity of the second dielectric layer 18 (εr2) is approximately 1, and the first and second radiation elements 14 and 15 have square shapes. Here, when the patch antenna has substantially square radiation elements, a length of a side (electric length) of the patch antenna is generally set to be half of a length of a waveform (corresponding to a half wavelength) based on the wavelength (λ) corresponding to a wireless frequency to be used. The length of one side of the first radiation element 14 is represented by the formula: λ/2√εr1=λ/4 (mm). On the other hand, the length of one side of the second radiation element 15 is represented by the formula: λ/2√εr2=λ/2 (mm) which is larger than that of the first radiation element.
The antenna device 10 of the first embodiment has a configuration in which the first radiation element 14 radiates linear polarization and the second radiation element 15 radiates circular polarization, in addition to a configuration in which the second radiation element 15 has a larger outer shape than that of the first radiation element 14 as described above. Specifically, as shown in
Such operations and effects to be obtained will be described more specifically. Generally, a linear polarization antenna is used for the RF tag antenna. Here, in the case of an operation such as counting inventory or the like, goods are arranged in different directions, and thereby the RF tags are facing to random directions in many cases. Accordingly, when it is assumed that the radio waves to be radiated are linear polarization, communication is not established if the polarization direction of the respective RF tags is perpendicular to the polarization direction of the second radiation element 15. For this reason, it is possible to communicate with more RF tags by allowing the radio waves radiated from the second radiation element 15 to be circular polarization.
On the other hand, when it is assumed that selective communication is to be performed, the RF tag antennas, which are not communication targets, are each facing to random directions in many cases. Accordingly, the communication is not established with the RF tags, which are not communication target and which are facing perpendicularly to the polarization direction of the radio wave, even if the RF tags are located nearby, by the first radiation element 14 radiating linear polarization and the polarization direction of the radio waves matching the polarization direction of the RF tag antenna which is communication target. That is, it is possible to suppress the probability of miscommunication with the RF tag, which is not a communication target, by causing the first radiation element 14 to radiate linear polarization.
For the above reason, in terms of selective communication, it is preferable that a user can easily recognize the polarization direction of the radio waves radiated from the first radiation element 14 for the more reliable selective communication.
Therefore, in the first embodiment, an indicating unit 13 for indicating the polarization direction of the radio waves radiated from the first radiation element 14 is provided in the antenna case body 12 as shown in
Next, the description will be made of the process flow for the communication with the RF tags relating to collective reading, selective reading, or selective writing by the reader and writer 100 of the first embodiment with reference to
First, in Act 101, the control unit 31 obtains the process designation information indicating which process is to be executed among collective reading, selective reading, and selective writing, based on the input by the user. Specifically, the control unit 31 configures a process designation screen 51 as shown in
Next, in Act 102, the control unit 31 determines whether the obtained process designation information designates collective reading. If the information designates collective reading, the antenna switching control unit 313 controls the wireless unit 33 to cause the second radiation element 15 to radiate the radio waves (selects the second radiation element 15) in Act 103. Thereafter, in Act 104, the transmission output control unit 315 of the control unit 31 sets the transmission output for the wireless unit 33 based on the collective reading information stored in the storage unit 311.
Next, in Act 105, the control unit 31 controls the wireless unit 33 to cause the second radiation element 15 to radiate the radio waves for collective reading, thereby performing collective reading, and obtains the information (identification ID) held in the RF tags. Then, in Act 106, the control unit 31 configures a process result screen 53 (
On the other hand, if it is determined that the process designation information does not designate collective reading in Act 102, the process proceeds to Act 107, and the antenna switching control unit 313 controls the wireless unit 33 to cause the first radiation element 14 to radiate the radio waves (selects the first radiation element 14). Thereafter, in Act 108, the control unit 31 determines whether the process designation information designates selective reading. If the information designates selective reading, the process proceeds to Act 109, and the transmission output setting unit of the control unit 31 sets the transmission output for the wireless unit 33 based on the selective reading output information stored in the storage unit 311.
Next, in Act 110, the control unit 31 configures a process start screen 55, as shown in
Here, there are cases where the RF tags, of which the number is smaller or larger than that preset by the user, are read as a result of the execution of selective reading. At this time, if the RF tags of which the number is smaller than the set number are read, the control unit 31 configures a process result screen 57 as shown in
In Act 108, if it is determined that the process designation information does not designate selective reading, the control unit 31 determines that the process designation information designates selective writing. Then, the process proceeds to Act 114, and the transmission output control unit 315 of the control unit 31 sets the transmission output for the wireless unit 33 based on the selective reading output information stored in the storage unit 311.
Next, in Act 115, the control unit 31 configures the process start screen 55 as shown in
Here, there are cases where the writing is performed on the RF tags, of which the number is smaller or larger than that preset by the user in the designation of the process designation information, as a result of the execution of selective writing. At this time, if the writing is performed on the RF tags of which the number is smaller than the preset number, the control unit 31 configures the process result screen 57 as shown in
As described above, the user can perform both collective reading and selective communication by the reader and writer 100 of the first embodiment provided with the first radiation element 14 and the second radiation element 15 which is larger than the first radiation element 14. In addition, it is possible to cause the first radiation element to radiate radio waves with an intensity distribution capable of communicating only with the RF tags located in the region in the vicinity of the first radiation element. Accordingly, it is possible to more reliably communicate with specific RF tags in selective communication.
In the first embodiment, the first radiation element 14 and the second radiation element 15 are configured as radiation elements of the patch antenna. In the second embodiment, the first radiation element 14 can be a radiation element of a chip antenna, which is smaller than the radiation element described in the first embodiment, and the second radiation element 15 can be a radiation element of the patch antenna. At this time, the first radiation element 14 and the second radiation element 15 can be accommodated in the same antenna case body, or can be accommodated in different case bodies. In addition, if the first radiation element and the second radiation element are accommodated in the same antenna case body, the first and second radiation elements may be arranged to be substantially parallel to each other. Alternatively, the first and the second radiation elements may be arranged, for example, on an identical plane.
Those skilled in the art can appropriately apply a known configuration to the chip antenna provided in the antenna device according to the second embodiment. However, the chip antenna generally has a cuboid shape with a side of several cm to several mm. That is, it is possible to extremely reduce the physical size of the radiation element as compared with the case where the first radiation element 14 is configured as a patch antenna. Accordingly, by adjusting the transmission output, it is possible to further reduce the range of the radio waves with a radio wave intensity capable of communicating with the RF tags. Therefore, it is possible to provide a more reliable selective communication with the RF tags which are communication targets.
In the third embodiment, the reader and writer 100 further includes a restriction member 60 to be used by being mounted on the antenna device 10 as shown in
In the third embodiment, the restriction member 60 is configured to be able to retreat from the position where the radiation of the radio waves from the region other than the predetermined region to the outside of the case body is restricted to the position where the radiation of the radio waves is not restricted, by being detached from the outer surface of the antenna case body 12. However, the retreat of the restriction member 60 from the antenna device 10 is not limited to being detached from the outer surface of the antenna case body, and can be configured in a different form. For example, it is also applicable to configure the restriction member 60 to be connected to the antenna case body 12 via a hinge and allow the restriction member 60 to be movable from a position where the radiation of the radio waves is restricted to a position where the radiation of the radio waves is not restricted (in this specification, “retreat” as a concept includes movement of position).
Although the description was made of the first to third embodiments as above, the invention is not limited thereto and can be applied to other embodiments.
For example, in the first embodiment, the second radiation element 15 of the antenna device 10 is configured such that the two-point feeding method is employed to cause circular polarization to be radiated. However, the second radiation element 15 is not limited thereto, and can be configured in a different form so as to radiate circular polarization. For example, the second radiation element 15 can be formed to have a shape in which two corners on a diagonal line in the rectangular shape are notched point-symmetrically so as to cause circular polarization to be radiated.
Moreover, the output information for controlling the transmission output is stored in the storage unit 311 constituted by the ROM or the RAM in the reader and writer main body 30 in the first embodiment. However, the invention is not limited thereto, and it is also applicable that the output information is stored in a storage unit in the external device and obtained by the control unit 31 via the interface unit 39, if necessary.
Furthermore, although the antenna device 10 (antenna case body 12) and the reader and writer main body 30 are separately configured in the first embodiment, it is also applicable to integrally configure the antenna device 10 and the reader and writer main body 30 by connecting the two case bodies (the antenna case body 12 and the case body of the reader and writer main body 30) or by accommodating the patch antenna and the hardware of the reader and writer main body 30 in respective compartments inside a single case body.
Moreover, although the transmission output is set based on the output information stored in advance in the first embodiment, it is also applicable that the user sets the transmission output via the input unit 35.
Furthermore, in the first embodiment, the control unit 31 switches the antenna to radiate the radio waves based on the input regarding the user's process designation. However, it is needless to say that switching of the antenna to radiate the radio waves can be configured in a different form. For example, the reader and writer main body 30 may be provided with a switching switch for switching the feeding to the first radiation element 14 or the second radiation element using a circuit.
As described above, according to the technique disclosed in this specification, it is possible to collectively communicate with one or a plurality of unspecified RF tags, and reliably communicate with one or a plurality of specific RF tags in selective communication.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of invention. Indeed, the novel apparatus, methods and computer readable media described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the apparatus and methods and computer readable media described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2009-213087 | Sep 2009 | JP | national |