RFID chip package and RFID tag

Information

  • Patent Grant
  • 8991713
  • Patent Number
    8,991,713
  • Date Filed
    Monday, March 11, 2013
    12 years ago
  • Date Issued
    Tuesday, March 31, 2015
    10 years ago
Abstract
An RFID chip package includes an RFID chip including a voltage booster circuit and processing an RF signal in a UHF band and a power supply circuit connected to the RFID chip and including at least one inductance element. A reactance component of an input/output impedance at an antenna-connecting input/output terminal of the power supply circuit is substantially 0Ω.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to an RFID chip package, and in particular, relates to an RFID chip package interposed between an RFID chip and an antenna and an RFID tag in an RFID (Radio Frequency Identification) system.


2. Description of the Related Art


In recent years, an RFID system has been put into practical use as an article information management system, which includes a reader/writer that generates an induction field; and an RFID tag that is attached to an article, and non-contact communication using an electromagnetic field is established between the reader/writer and the RFID tag to transmit predetermined information therebetween. Here, the RFID tag is composed of an RFID chip that has stored predetermined information therein and processes a predetermined RF signal; and an antenna that performs transmission/reception of RF signals.


Meanwhile, in the RFID system, since an RF signal is very weak, for example, a voltage booster circuit such as a multi-stage charge pump is provided in the RFID chip as described in Japanese Unexamined Patent Application Publication No. 2005-202943 and Japanese Unexamined Patent Application Publication No. 2009-130896, and the input/output impedance of the RFID chip is very high. Thus, in the antenna, it is necessary to match its input/output impedance to the input/output impedance of the RFID chip, and hence antenna designing is difficult, and in particular, size reduction and band expansion are difficult.


SUMMARY OF THE INVENTION

Therefore, preferred embodiments of the present invention provide an RFID tag and an RFID chip package, the RFID chip package including an RFID chip and being arranged to match the RFID chip having a high impedance characteristic to an antenna having a low impedance characteristic so as to eliminate difficulty in antenna designing.


An RFID chip package according to a preferred embodiment of the present invention includes an RFID chip including a voltage booster circuit and processing an RF signal in a UHF band; and a power supply circuit connected to the RFID chip and including at least one inductance element. A reactance component of an input/output impedance at an antenna-connecting input/output terminal of the power supply circuit is substantially 0Ω.


An RFID tag according to another preferred embodiment of the present invention includes an antenna element including a connection portion; and an RFID chip package connected to the connection portion. The RFID chip package includes an RFID chip including a voltage booster circuit and processing an RF signal in a UHF band and a power supply circuit connected to the RFID chip and including at least one inductance element. A reactance component of an input/output impedance at an antenna-connecting input/output terminal of the power supply circuit is substantially 0Ω.


In the RFID chip package, the RFID chip preferably includes the voltage booster circuit, and the reactance component of the input/output impedance is about −200Ω. The power supply circuit is connected to the RFID chip, and the reactance component of the input/output impedance of the antenna terminal to which the antenna is connected is substantially 0Ω. Thus, matching can easily be provided with a general antenna such as a dipole type or a patch type, flexibility in antenna designing is increased, and hence band expansion is made easy. In addition, the impedance of a measuring system in measuring the RFID chip is preferably about 50Ω, for example, and thus the measurement of the RFID chip is also made easy.


According to various preferred embodiments of the present invention, an RFID chip having a high impedance characteristic can be suitably matched to an antenna having a low impedance characteristic, difficulty in antenna designing can be eliminated, and an RFID chip package is reduced in size.


The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view showing an RFID chip package according to a preferred embodiment of the present invention.



FIG. 2 is an equivalent circuit diagram showing a power supply circuit that is a first example of a preferred embodiment of the present invention.



FIG. 3 is a plan view showing respective base layers of a disassembled laminate constituting the power supply circuit that is the first example of a preferred embodiment of the present invention.



FIG. 4 is an equivalent circuit diagram showing a power supply circuit that is a second example of a preferred embodiment of the present invention.



FIG. 5 is a plan view showing respective base layers of a disassembled laminate constituting the power supply circuit that is the second example of a preferred embodiment of the present invention.



FIG. 6 is an equivalent circuit diagram showing a power supply circuit that is a third example of a preferred embodiment of the present invention.



FIG. 7 is a Smith chart showing the impedance matching characteristic of the power supply circuit that is the first example of a preferred embodiment of the present invention.



FIGS. 8A and 8B show a preferred embodiment of an RFID tag according to the present invention, where FIG. 8A is an exploded perspective view, and FIG. 8B is a cross-sectional view.



FIG. 9 is an exploded perspective view showing an RFID tag according to another preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, preferred embodiments of an RFID chip package and an RFID tag according to the present invention will be described with reference to the accompanying drawings. It is noted that in the drawings, common elements and portions are denoted by the same reference signs, and the overlap description is omitted.


As shown in FIG. 1, in an RFID chip package according to a preferred embodiment of the present invention, an RFID chip 50 is mounted on a power supply circuit substrate 10 includes a laminate that includes a power supply circuit. It is noted that the RFID chip 50 may be incorporated in the power supply circuit substrate 10 or may be accommodated in a recess (not shown) provided in the substrate 10.


The RFID chip 50 preferably processes, for example, RF signals in the UHF band, includes a clock circuit, a logic circuit, a memory circuit, and the like, and has necessary information stored therein. In addition, the RFID chip 50 also preferably includes a voltage booster circuit such as a charge pump, and with regard to its input/output impedance, the real portion preferably is about 20Ω and the imaginary portion preferably is about −200Ω, for example. A pair of input/output terminal electrodes and a pair of mounting terminal electrodes are provided on the back surface of the RFID chip 50. The input/output terminal electrodes are electrically connected via metal bumps or the like to power supply terminal electrodes 20a and 20b provided on the top surface of the power supply circuit substrate 10, and the mounting terminal electrodes are electrically connected via metal bumps or the like to mounting terminal electrodes 20c and 20d provided on the top surface of the power supply circuit substrate 10. It is noted that Au, solder, or the like can be used as the material of the metal bumps.


The power supply circuit preferably includes at least one inductance element, preferably also includes a capacitance element, and is incorporated in a power supply circuit substrate including a laminate. The reactance component of the input/output impedance of an antenna terminal electrode is set to substantially 0Ω. Hereinafter, a first example, a second example, and a third example of the power supply circuit will be described in detail.


As shown in FIG. 2, a power supply circuit 15A that is a first example of a preferred embodiment of the present invention includes two power supply terminal electrodes 20a and 20b connected to the RFID chip 50 and antenna terminal electrodes 21a and 21b connected to an antenna which is not shown, and includes inductance elements L1 and L2 and capacitance elements C1 and C2. The inductance element L1 and the capacitance element C1 are connected in series between the terminal electrodes 20a and 21a. The inductance element L2 is connected to a connection point between the inductance element L1 and the capacitance element C1 and a connection point between the terminal electrode 20b and the capacitance element C2. The capacitance element C2 is connected in series between the terminal electrodes 20b and 21b.


The inductance elements L1 and L2 are electromagnetically coupled to each other, the inductance element L1 and the capacitance element C1 are coupled to each other via an electromagnetic field, the inductance element L2 and the capacitance element C2 are coupled to each other via an electromagnetic field, and thus a resonant circuit is defined by the respective elements. In addition, as described with reference to FIG. 3, each of coil patterns defining the inductance elements L1 and L2, respectively, has a line capacity.


The power supply circuit 15A transmits a high-frequency signal that is transmitted from the RFID chip 50, is inputted from the terminal electrodes 20a and 20b, and has a predetermined frequency, from the terminal electrodes 21a and 21b to the antenna, and supplies a high-frequency signal received by the antenna, to the RFID chip 50 in the opposite direction. The power supply circuit 15A has a predetermined resonant frequency, and the reactance component of the input/output impedance of the terminal electrodes 21a and 21b is set to substantially 0Ω. Thus, the input impedance, from the RFID chip 50, of which the real portion preferably is about 20Ω and the imaginary portion preferably is about −200Ω becomes an output impedance of which the real portion is substantially 50Ω and the imaginary portion is 0Ω, and hence the impedance is matched to that of the antenna. In addition, the impedance of a measuring system in measuring the RFID chip 50 is preferably about 50Ω, for example, and thus the measurement of the RFID chip 50 is also made easy.


Next, the structure of a laminate (the power supply circuit substrate 10) including the power supply circuit 15A will be described with reference to FIG. 3. The laminate includes base layers 31a to 31k, each of the base layers 31a to 31j is a ceramic sheet formed from a dielectric material or a magnetic material, and the base layer 31k is a transfer sheet. In FIG. 3, each electrode and each conductor are provided on each of the base layers 31a to 31k, and lamination is performed in order in which the base layer 31a is stacked on the base layer 31b and further stacked on the base layers 31c, 31d, . . . etc. The base layer (transfer sheet) 31k which is stacked in the lowermost layer is peeled off after the lamination such that the terminal electrodes 20a to 20d are exposed at the bottom surface of the laminate.


Specifically, the terminal electrodes 21a and 21b, which are connected to the antenna, and a via-hole conductor 29c are provided in the base layer 31a, and capacitance electrodes 22a to 22f and via-hole conductors 29d, 29e, and 29f are provided in the base layers 31b, 31c, and 31d, respectively. Loop conductors 23a to 23f and 24a to 24d and via-hole conductors 29a, 29b, and 29g are provided in the base layers 31e to 31j. The terminal electrodes 20a to 20d and a via-hole conductor 29h are formed in the base layer 31k.


By laminating the base layers 31a to 31k, an equivalent circuit shown in FIG. 2 is defined. In other words, the capacitance element C1 is defined by the capacitance electrodes 22a, 22c, and 22e, and the capacitance element C2 is defined by the capacitance electrodes 22b, 22d, and 22f. In addition, the inductance element L1 is defined by a coil pattern in which the loop conductors 23a to 23f are defined by the via-hole conductor 29a, and the inductance element L2 is defined by a coil pattern in which the loop conductors 24a to 24d are defined by the via-hole conductor 29b.


The impedance matching characteristic of the power supply circuit 15A incorporated in the power supply circuit substrate 10 as described above is shown in a Smith chart in FIG. 7. With regard to the input/output impedance of the RFID chip 50, the real portion preferably is about 20Ω and the imaginary portion preferably is about −200Ω, and with regard to the impedance on the antenna side (after conversion), the real portion preferably is about 50Ω and the imaginary portion is 0Ω, for example.


Meanwhile, the inductance elements L1 and L2 are arranged adjacently in the laminate such that the winding axes of the coil patterns constituting the inductance elements L1 and L2, respectively, are parallel or substantially parallel to each other. The coil patterns are wound such that the directions of magnetic fluxes thereof at a moment are the same (see arrows in FIG. 3). However, the coil patterns may be wound such that these directions are opposite to each other. In addition, the openings of the respective coil patterns are covered with the capacitance electrodes 22e and 22f such that magnetic fluxes passing therethrough are guided to the capacitance elements C1 and C2. In other words, the inductance element L1 and the capacitance element C1 are coupled to each other via an electromagnetic field, and the inductance element L2 and the capacitance element C2 are coupled to each other via an electromagnetic field. In addition, by connecting the capacitance elements C1 and C2 to the antenna terminal electrodes 21a and 21b, an RFID chip package having resistance to ESD can be realized.


As shown in FIG. 4, a power supply circuit 15B that is a second example of a preferred embodiment of the present invention includes two power supply terminal electrodes 20a and 20b connected to the RFID chip 50 and antenna terminal electrodes 21a and 21b connected to an antenna which is not shown, and includes inductance elements L5, L6, and L7. The inductance elements L5 and L6 are connected in series between the terminal electrodes. The inductance element L7 is connected to a connection point between the inductance elements L5 and L6 and between the terminal electrodes 20b and 21b. The inductance elements L5, L6, and L7 are electromagnetically coupled to each other. In addition, as described with reference to FIG. 5, coil patterns defining the inductance elements L5, L6, and L7, respectively include line capacities and define a resonant circuit.


The function of the power supply circuit 15B preferably is basically the same as that of the power supply circuit 15A which is the first example, and the power supply circuit 15B transmits a high-frequency signal that is transmitted from the RFID chip 50, is inputted from the terminal electrodes 20a and 20b, and has a predetermined frequency, from the terminal electrodes 21a and 21b to the antenna, and supplies a high-frequency signal received by the antenna to the RFID chip 50 in the opposite direction. The power supply circuit 15B has a predetermined resonant frequency, and the reactance component of the input/output impedance of the terminal electrodes 21a and 21b preferably is set to substantially 0Ω. Thus, the input impedance, from the RFID chip 50, of which the real portion preferably is about 20Ω and the imaginary portion preferably is about −200Ω becomes an output impedance of which the real portion preferably is substantially 50Ω and the imaginary portion preferably is 0Ω, for example, and hence the impedance is matched to that of the antenna.


Next, the structure of a laminate (the power supply circuit substrate 10) including the power supply circuit 15B will be described with reference to FIG. 5. Each of base layers 41a to 41o is a ceramic sheet formed from a dielectric material or a magnetic material, and a base layer 41p is a transfer sheet. In addition, the order in which the base layers 41a to 41p are laminated is also preferably the same as in the first example. The base layer (transfer sheet) 41p which is stacked in the lowermost layer is peeled off after the lamination causing the terminal electrodes 20a to 20d to be exposed at the bottom surface of the laminate.


Specifically, the terminal electrodes 21a and 21b, which are connected to the antenna, and via-hole conductors 43c and 43g are provided in the base layer 41a, and the via-hole conductors 43c and 43g are provided in the base layer 41b. Loop conductors 42a to 42l and via-hole conductors 43a, 43b, 43d, and 43g are provided in the base layers 41c to 41n, respectively, and via-hole conductors 43e and 43f are provided in the base layer 41o. The terminal electrodes 20a to 20d and the via-hole conductors 43e and 43f are provided in the base layer 41p.


By laminating the base layers 41a to 41p, an equivalent circuit shown in FIG. 4 is defined. In other words, the inductance element L5 is defined by a coil pattern in which a portion of the loop conductor 42d and the loop conductors 42e to 42l are defined by the via-hole conductor 43b. The inductance element L6 is defined by a coil pattern in which the loop conductors 42a to 42c and a portion of the loop conductor 42d are defined by the via-hole conductor 43a. Furthermore, a portion of the loop conductor 42d provided in the base layer 41f defines the inductance element L7. In addition, a line 45a shown in FIG. 4 is defined by the via-hole conductors 43d and 43f, and a line 45b is defined by the via-hole conductor 43g and the via-hole conductor 43d in the base layer 41f.


The impedance matching characteristic of the power supply circuit 15B included in the power supply circuit substrate 10 as described above preferably is basically the same as in the Smith chart in FIG. 7.


As shown in FIG. 6, a power supply circuit 15C that is a third example of a preferred embodiment of the present invention is a circuit in which the inductance element L7 is omitted from the power supply circuit 15B, which is the second example, and the connection point between the inductance elements L5 and L6 and the lines 45a and 45b connecting the terminal electrodes 20b and 21b are connected to each other by a line 45c. The inductance elements L5 and L6 are electromagnetically coupled to each other, and the coil patterns thereof include line capacities and define a resonant circuit. The action and function of the power supply circuit 15C preferably are basically the same as those of the power supply circuit 15B, which is the second example.


Meanwhile, each of the inductance elements L5 and L6 has a function to provide impedance matching between the RFID chip and the antenna. In particular, the inductance element L5 is an inductance inserted in series on the RFID chip side. This inductance mainly has a function to shift the impedance along the imaginary axis direction on an impedance chart. On the other hand, the inductance element L6 is an inductance inserted in series on the antenna side and is arranged so as to extend between the two terminals 21a and 21b on the antenna side. This inductance mainly has a function to shift the impedance on the imaginary axis on an admittance chart. By making the inductance elements L5 and L6 have the above functions, the impedance can be efficiently matched.


In particular, by making the inductance value of the inductance element L5 higher than the inductance value of the inductance element L6, even when, with regard to the impedance on the RFID chip side (the input/output impedance), for example, the real portion is about 20Ω and the imaginary portion is about −200Ω, it can be made to get close to 50Ω with a relatively simple configuration, for example.


In addition, the inductance elements L5 and L6 are preferably coupled to each other via an electromagnetic field (mainly, a magnetic field). As a result, a necessary inductance value can be obtained with a small pattern. Furthermore, when the coil patterns of the inductance elements L5 and L6 are wound and arranged such that magnetic fields generated in the respective coil patterns are in-phase with each other (the directions of the magnetic fields generated in the respective coil patterns are the same), the magnetic fields of the respective coils enhance each other, and a high inductance value can be obtained even though the size of each coil is small. Thus, it is made possible to perform communication by the RFID chip and the power supply circuit substrate in a short range of several centimeters or less (even when an antenna is not connected).


An RFID tag 60A according to a preferred embodiment of the present invention will be described with reference to FIG. 8. In the RFID tag 60A, a first radiating element 65 and a second radiating element 66 that define and serve as a dipole type antenna are provided as a thin-film conductor or a thick-film conductor on a base film 61, and the power supply circuit substrate 15 including the RFID chip 50 mounted thereon is connected to the first radiating element 65 and the second radiating element 66. Specifically, the antenna terminal electrodes 21a and 21b (a third terminal 21a and a fourth terminal 21b) provided on the back surface of the power supply circuit substrate 15 are connected to connection portions 65a and 66a of the first and second radiating elements 65 and 66 via conductive bonding materials 67a and 67b. The power supply terminal electrodes 20a and 20b (a first terminal 20a and a second terminal 20b) provided on the front surface of the power supply circuit substrate 15 are connected to the input/output terminal electrodes of the RFID chip 50 via conductive bonding materials 68a and 68b.


An RFID tag 60B according to another preferred embodiment of the present invention will be described with reference to FIG. 9. In the RFID tag 60B, a radiating element 70 that defines and serves as a loop type antenna is provided as a thin-film conductor or a thick-film conductor on a base film 61, and the power supply circuit substrate 15 including the RFID chip 50 mounted thereon is connected to connection portions 70a and 70b of the radiating element 70. The connection relationship between the power supply circuit substrate 15 and the RFID chip 50, and the connection relationship between the power supply circuit substrate 15 and the connection portions 70a and 70b are preferably the same as in the RFID tag 60A according to preferred embodiment described above.


It is noted that the RFID chip package and the RFID tag according to the present invention are not limited to the preferred embodiments described above, and can be modified in a variety of ways within the scope of the present invention.


As described above, preferred embodiments of the present invention are useful for an RFID chip package and an RFID tag, and in particular, are excellent in that an RFID chip having a high impedance characteristic can be suitably coupled to an antenna having a low impedance characteristic.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. An RFID chip package comprising: an RFID chip including a voltage booster circuit and processing an RF signal in a UHF band; anda power supply circuit connected to the RFID chip and including at least one inductance element; whereina reactance component of an input/output impedance at an antenna-connecting input/output terminal of the power supply circuit is substantially 0Ω;the RFID chip includes a balanced type input/output terminal including a first input/output terminal and a second input/output terminal;the power supply circuit includes a first terminal connected to the first input/output terminal, a second terminal connected to the second input/output terminal, a third terminal connected to a first connection portion of an antenna element, and a fourth terminal connected to a second connection portion of the antenna element; andthe power supply circuit further includes a first inductance element connected between the first terminal and the second terminal and a second inductance element connected between the third terminal and the fourth terminal.
  • 2. The RFID chip package according to claim 1, wherein an inductance value of the first inductance element is higher than an inductance value of the second inductance element.
  • 3. The RFID chip package according to claim 1, wherein the first inductance element and the second inductance element are coupled to each other via an electromagnetic field.
  • 4. The RFID chip package according to claim 1, wherein the power supply circuit is located in a power supply circuit substrate including the inductance element; andthe RFID chip is mounted on or included within the power supply circuit substrate.
  • 5. The RFID chip package according to claim 4, wherein the power supply circuit substrate is a laminate including a plurality of laminated base layers; andthe inductance element includes a coil pattern in which a loop conductor provided on at least one of the base layers is wound.
  • 6. The RFID chip package according to claim 5, wherein the first inductance element and the inductance element are defined by a first coil pattern and a second coil pattern, respectively; andthe first and second coil patterns are arranged adjacently in the laminate such that winding axes thereof are parallel or substantially parallel to each other.
  • 7. The RFID chip package according to claim 6, wherein the first coil pattern and the second coil pattern are wound and arranged such that magnetic fields generated in the first and second coil patterns are in-phase with each other.
  • 8. The RFID chip package according to claim 5, wherein the power supply circuit further includes a capacitance element; andthe capacitance element includes capacitance electrodes provided on the base layers so as to face each other.
  • 9. An RFID tag including: an antenna element including a connection portion; andan RFID chip package connected to the connection portion; whereinthe RFID chip package includes an RFID chip including a voltage booster circuit and processing an RF signal in a UHF band and a power supply circuit connected to the RFID chip and including at least one inductance element;a reactance component of an input/output impedance at an antenna-connecting input/output terminal of the power supply circuit is substantially 0Ω;the RFID chip includes a balanced type input/output terminal including a first input/output terminal and a second input/output terminal;the power supply circuit includes a first terminal connected to the first input/output terminal, a second terminal connected to the second input/output terminal, a third terminal connected to a first connection portion of an antenna element, and a fourth terminal connected to a second connection portion of the antenna element; andthe power supply circuit further includes a first inductance element connected between the first terminal and the second terminal and a second inductance element connected between the third terminal and the fourth terminal.
  • 10. The RFID tag according to claim 9, wherein an inductance value of the first inductance element is higher than an inductance value of the second inductance element.
  • 11. The RFID tag according to claim 9, wherein the first inductance element and the second inductance element are coupled to each other via an electromagnetic field.
  • 12. The RFID tag according to claim 9, wherein the power supply circuit is located in a power supply circuit substrate including the inductance element; andthe RFID chip is mounted on or included within the power supply circuit substrate.
  • 13. The RFID tag according to claim 12, wherein the power supply circuit substrate is a laminate including a plurality of laminated base layers; andthe inductance element includes a coil pattern in which a loop conductor provided on at least one of the base layers is wound.
  • 14. The RFID tag according to claim 13, wherein the first inductance element and the inductance element are defined by a first coil pattern and a second coil pattern, respectively; andthe first and second coil patterns are arranged adjacently in the laminate such that winding axes thereof are parallel or substantially parallel to each other.
  • 15. The RFID tag according to claim 14, wherein the first coil pattern and the second coil pattern are wound and arranged such that magnetic fields generated in the first and second coil patterns are in-phase with each other.
  • 16. The RFID tag according to claim 13, wherein the power supply circuit further includes a capacitance element; andthe capacitance element includes capacitance electrodes provided on the base layers so as to face each other.
Priority Claims (1)
Number Date Country Kind
2011-005419 Jan 2011 JP national
US Referenced Citations (166)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5399060 Richert Mar 1995 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104311 Lastinger Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6243045 Ishibashi Jun 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6452563 Porte Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6927738 Senba et al. Aug 2005 B2
6956481 Cole Oct 2005 B1
6963729 Uozumi Nov 2005 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7363090 Halperin et al. Apr 2008 B2
7405664 Sakama et al. Jul 2008 B2
7564340 Kowalski et al. Jul 2009 B2
7580694 Rizzo et al. Aug 2009 B2
7710270 Shionoiri et al. May 2010 B2
8751013 Johnson et al. Jun 2014 B2
20010011012 Hino et al. Aug 2001 A1
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050001031 Akiho et al. Jan 2005 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050133605 Koyama et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050253726 Yoshida et al. Nov 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060055531 Cook et al. Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060114159 Yoshikawa et al. Jun 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060208900 Tavassoli Hozouri Sep 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244568 Tong et al. Nov 2006 A1
20060244676 Uesaka Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070015549 Hernandez et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200705 Yamagajo et al. Aug 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229276 Yamagajo et al. Oct 2007 A1
20070247387 Kubo et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070252763 Martin Nov 2007 A1
20070252770 Kai et al. Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080068132 Kayanakis et al. Mar 2008 A1
20080070003 Nakatani et al. Mar 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080111695 Yamagajo et al. May 2008 A1
20080129606 Yanagisawa et al. Jun 2008 A1
20080143630 Kato et al. Jun 2008 A1
20080169905 Slatter Jul 2008 A1
20080184281 Ashizaki et al. Jul 2008 A1
20080272885 Atherton Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090021352 Kataya et al. Jan 2009 A1
20090021446 Kataya et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090066466 Arimura Mar 2009 A1
20090080296 Dokai et al. Mar 2009 A1
20090096696 Joyce, Jr. et al. Apr 2009 A1
20090109034 Chen et al. Apr 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090134979 Tsukamoto et al. May 2009 A1
20090140947 Sasagawa et al. Jun 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090201116 Orihara Aug 2009 A1
20090224061 Kato et al. Sep 2009 A1
20090231106 Okamura Sep 2009 A1
20090259265 Stevenson et al. Oct 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
20090266900 Ikemoto et al. Oct 2009 A1
20090278687 Kato Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090321527 Kato et al. Dec 2009 A1
20100103058 Kato et al. Apr 2010 A1
20100182210 Ryou et al. Jul 2010 A1
20100283694 Kato Nov 2010 A1
20100308118 Kataya et al. Dec 2010 A1
20110031320 Kato et al. Feb 2011 A1
20110063184 Furumura et al. Mar 2011 A1
20110186641 Kato et al. Aug 2011 A1
20110253795 Kato Oct 2011 A1
Foreign Referenced Citations (531)
Number Date Country
2 279 176 Jul 1998 CA
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 848 448 Jun 1998 EP
0 948 083 Oct 1999 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 085 480 Mar 2001 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 193 793 Apr 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 547 753 Jun 2005 EP
1 548 872 Jun 2005 EP
1 626 364 Feb 2006 EP
1 701 296 Sep 2006 EP
1 703 589 Sep 2006 EP
1 742 296 Jan 2007 EP
1 744 398 Jan 2007 EP
1 840 802 Oct 2007 EP
1 841 005 Oct 2007 EP
1 865 574 Dec 2007 EP
1 887 652 Feb 2008 EP
1 976 056 Oct 2008 EP
1 988 491 Nov 2008 EP
1 988 601 Nov 2008 EP
1 993 170 Nov 2008 EP
2 009 738 Dec 2008 EP
2 012 258 Jan 2009 EP
2 096 709 Sep 2009 EP
2 148 449 Jan 2010 EP
2 166 617 Mar 2010 EP
2 251 934 Nov 2010 EP
2 256 861 Dec 2010 EP
2 330 684 Jun 2011 EP
2 305 075 Mar 1997 GB
2461443 Jan 2010 GB
50-143451 Nov 1975 JP
61-284102 Dec 1986 JP
62-127140 Aug 1987 JP
01-212035 Aug 1989 JP
02-164105 Jun 1990 JP
02-256208 Oct 1990 JP
3-171385 Jul 1991 JP
03-503467 Aug 1991 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
04-096814 Aug 1992 JP
04-101168 Sep 1992 JP
04-134807 Dec 1992 JP
05-226926 Sep 1993 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-029215 Apr 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
08-055725 Feb 1996 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-088586 Apr 1996 JP
08-88586 Apr 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
09-093029 Apr 1997 JP
9-93029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
09-284038 Oct 1997 JP
09-294374 Nov 1997 JP
9-512367 Dec 1997 JP
10-69533 Mar 1998 JP
10-069533 Mar 1998 JP
10-084406 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-173427 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-242742 Sep 1998 JP
10-293828 Nov 1998 JP
10-334203 Dec 1998 JP
11-025244 Jan 1999 JP
11-039441 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-88241 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149537 Jun 1999 JP
11-149538 Jun 1999 JP
11-175678 Jul 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-282993 Oct 1999 JP
11-328352 Nov 1999 JP
11-331014 Nov 1999 JP
11-346114 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2000-048152 Feb 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-242754 Sep 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2001-043340 Feb 2001 JP
3075400 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-76111 Mar 2001 JP
2001-084463 Mar 2001 JP
2001-101369 Apr 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-209767 Aug 2001 JP
2001-240046 Sep 2001 JP
2001-240217 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-291181 Oct 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351083 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2001-358527 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-32731 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-042083 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-076750 Mar 2002 JP
2002-76750 Mar 2002 JP
2002-111363 Apr 2002 JP
2002-143826 May 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-175920 Jun 2002 JP
2002-183676 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-521757 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-222398 Aug 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-246828 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-290130 Oct 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-325013 Nov 2002 JP
2002-362613 Dec 2002 JP
2002-366917 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-022912 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-037861 Feb 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099184 Apr 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-308363 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317055 Nov 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2003-536302 Dec 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-096618 Mar 2004 JP
2004-104344 Apr 2004 JP
2004-126750 Apr 2004 JP
2004-127230 Apr 2004 JP
2004-140513 May 2004 JP
2004-145449 May 2004 JP
2004-163134 Jun 2004 JP
2004-166176 Jun 2004 JP
2004-213582 Jul 2004 JP
2004-519916 Jul 2004 JP
2004070879 Aug 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-282403 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-295297 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-304370 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-033461 Feb 2005 JP
2005-050581 Feb 2005 JP
2005-064799 Mar 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-134942 May 2005 JP
2005-135132 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-192124 Jul 2005 JP
2005-202943 Jul 2005 JP
2005-204038 Jul 2005 JP
2005-210223 Aug 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-229474 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-252853 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-277579 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-284455 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-306696 Nov 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-327622 Nov 2005 JP
2005-333244 Dec 2005 JP
2005-335755 Dec 2005 JP
2005-340759 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-13976 Jan 2006 JP
2006-013976 Jan 2006 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033312 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-039947 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-050200 Feb 2006 JP
2006-053833 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-074348 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148462 Jun 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-238282 Sep 2006 JP
2006-246372 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270681 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-287659 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2006-339964 Dec 2006 JP
2007-007888 Jan 2007 JP
2007-013120 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-18067 Jan 2007 JP
2007-019905 Jan 2007 JP
2007-28002 Feb 2007 JP
2007-040702 Feb 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096655 Apr 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-116347 May 2007 JP
2007-122542 May 2007 JP
2007-149757 Jun 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-166133 Jun 2007 JP
3975918 Jun 2007 JP
2007-172369 Jul 2007 JP
2007-172527 Jul 2007 JP
2007-524942 Aug 2007 JP
2007-228254 Sep 2007 JP
2007-228325 Sep 2007 JP
2007-228437 Sep 2007 JP
2007-233597 Sep 2007 JP
2007-241789 Sep 2007 JP
2007-249620 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-272264 Oct 2007 JP
2007-287128 Nov 2007 JP
2007-295177 Nov 2007 JP
2007-295395 Nov 2007 JP
2007-295557 Nov 2007 JP
2007-312350 Nov 2007 JP
2007-324865 Dec 2007 JP
2008-033716 Feb 2008 JP
2008-042910 Feb 2008 JP
2008-72243 Mar 2008 JP
2008-083867 Apr 2008 JP
2008-092131 Apr 2008 JP
2008-097426 Apr 2008 JP
2008-098993 Apr 2008 JP
4069958 Apr 2008 JP
2008-103691 May 2008 JP
2008-107947 May 2008 JP
2008-513888 May 2008 JP
2008-148345 Jun 2008 JP
2008-519347 Jun 2008 JP
2008-160821 Jul 2008 JP
2008-160874 Jul 2008 JP
2008-167190 Jul 2008 JP
2008-182438 Aug 2008 JP
2008-197714 Aug 2008 JP
2008-535372 Aug 2008 JP
2008-207875 Sep 2008 JP
2008-211572 Sep 2008 JP
2008-217406 Sep 2008 JP
2008-226099 Sep 2008 JP
2008-252517 Oct 2008 JP
2008-288915 Nov 2008 JP
2008-294491 Dec 2008 JP
2009-017284 Jan 2009 JP
2009-021970 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-027291 Feb 2009 JP
2009-27291 Feb 2009 JP
2009-037413 Feb 2009 JP
2009-044647 Feb 2009 JP
2009-044715 Feb 2009 JP
3148168 Feb 2009 JP
2009-065426 Mar 2009 JP
2009-110144 May 2009 JP
2009-111986 May 2009 JP
2009-130896 Jun 2009 JP
2009-135166 Jun 2009 JP
2009-524363 Jun 2009 JP
2009-153166 Jul 2009 JP
2009-182630 Aug 2009 JP
2009-213169 Sep 2009 JP
2009-213171 Sep 2009 JP
2009-260758 Nov 2009 JP
2009-284182 Dec 2009 JP
2010-009196 Jan 2010 JP
2010-050844 Mar 2010 JP
2010-051017 Mar 2010 JP
2010-081571 Apr 2010 JP
4609604 Jan 2011 JP
2011-205384 Oct 2011 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
9833142 Jul 1998 WO
9967754 Dec 1999 WO
0010122 Feb 2000 WO
0195242 Dec 2001 WO
0248980 Jun 2002 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005091434 Sep 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2006048663 May 2006 WO
2006049068 May 2006 WO
2006114821 Nov 2006 WO
2007013168 Feb 2007 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007086130 Aug 2007 WO
2007094494 Aug 2007 WO
2007097385 Aug 2007 WO
2007099602 Sep 2007 WO
2007100092 Sep 2007 WO
2007102360 Sep 2007 WO
2007105348 Sep 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007132094 Nov 2007 WO
2007138857 Dec 2007 WO
2008001561 Jan 2008 WO
2008007606 Jan 2008 WO
2008081699 Jul 2008 WO
2008126458 Oct 2008 WO
2008133018 Nov 2008 WO
2008140037 Nov 2008 WO
2008142957 Nov 2008 WO
2009008296 Jan 2009 WO
2009011144 Jan 2009 WO
2009011154 Jan 2009 WO
2009011376 Jan 2009 WO
2009011400 Jan 2009 WO
2009011423 Jan 2009 WO
2009048767 Apr 2009 WO
2009081719 Jul 2009 WO
2009110381 Sep 2009 WO
2009119548 Oct 2009 WO
2009128437 Oct 2009 WO
2009140220 Nov 2009 WO
2009142114 Nov 2009 WO
2010026939 Mar 2010 WO
2010050361 May 2010 WO
2010079830 Jul 2010 WO
2010119854 Oct 2010 WO
Non-Patent Literature Citations (193)
Entry
Official communication issued in counterpart International Application No. PCT/JP2008/071502, mailed Feb. 24, 2009.
Kato et al.: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/432,854, filed Apr. 30, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/058168, mailed Aug. 12, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/062886, mailed Oct. 21, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/469,896, filed May 21, 2009.
Ikemoto et al.: “Wireless IC Device,” U.S. Appl. No. 12/496,709, filed Jul. 2, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/062947, mailed Aug. 19, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/056026, mailed Jul. 1, 2008.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus,” U.S. Appl. No. 12/503,188, filed Jul. 15, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/055567, mailed May 20, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/051853, mailed Apr. 22, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/057239, mailed Jul. 22, 2008.
Kimura et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,338, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,340, filed Jul. 28, 2009.
Kato: “Wireless IC Device,” U.S. Appl. No. 12/510,344, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,347, filed Jul. 28, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/063025, mailed on Aug. 12, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/603,608, filed Oct. 22, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/688,072, filed Jan. 15, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053693, mailed on Jun. 9, 2009.
Kato: “Composite Antenna,” U.S. Appl. No. 12/845,846, filed Jul. 29, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053690, mailed on Jun. 2, 2009.
Kato et al.: “Radio Frequency IC Device and Radio Communication System,” U.S. Appl. No. 12/859,340, filed Aug. 19, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed on Jun. 23, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/859,880, filed Aug. 20, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/057482, mailed on Jul. 21, 2009.
Kataya et al.: “Wireless IC Device, Electronic Apparatus, and Method for Adjusting Resonant Frequency of Wireless IC Device,” U.S. Appl. No. 12/861,945, filed Aug. 24, 2010.
Kato: “Wireless IC Device and Electromagnetic Coupling Module,” U.S. Appl. No. 12/890,895, filed Sep. 27, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059410, mailed on Aug. 4, 2009.
Kato et al.: “Wireless IC Device” U.S. Appl. No. 12/902,174, filed Oct. 12, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059259, mailed on Aug. 11, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-506742, mailed on Apr. 6, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/056698, mailed on Jul. 7, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/066336, mailed on Dec. 22, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-509439, mailed on Jul. 6, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Mar. 29, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2009-525327, drafted on Sep. 22, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032312, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 23, 2011.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/241,823, filed Sep. 23, 2011.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/272,365, filed Oct. 13, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056812, mailed on Jul. 13, 2010.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 13/295,153, filed Nov. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/057668, mailed on Aug. 17, 2010.
Osamura et al.: “Radio Frequency IC Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/308,575, filed Dec. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069417, mailed on Dec. 7, 2010.
Kato: “Wireless IC Device and Coupling Method for Power Feeding Circuit and Radiation Plate”; U.S. Appl. No. 13/325,273, filed Dec. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2012/050557, mailed on Apr. 10, 2012.
Kimura et al.: “Wireless Communication Device”; U.S. Appl. No. 13/789,761, filed Mar. 8, 2013.
English translation of NL9100176, published on Mar. 2, 1992.
English translation of NL9100347, published on Mar. 2, 1992.
Kato et al.: “Antenna”; U.S. Appl. No. 11/928,502, filed Oct. 30, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/211,117, filed Sep. 16, 2008.
Kato et al.: “Antenna”; U.S. Appl. No. 11/688,290, filed Mar. 20, 2007.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 11/740,509, filed Apr. 26, 2007.
Kato et al.: “Product Including Power Supply Circuit Board”; U.S. Appl. No. 12/234,949, filed Sep. 22, 2008.
Kato et al.: “Data Coupler”; U.S. Appl. No. 12/252,475, filed Oct. 16, 2008.
Kato et al.; “Information Terminal Device”; U.S. Appl. No. 12/267,666, filed Nov. 10, 2008.
Kato et al.: “Wireless IC Device and Wireless IC Device Composite Component”; U.S. Appl. No. 12/276,444, filed Nov. 24, 2008.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 12/326,916, filed Dec. 3, 2008.
Dokai et al.: “System for Inspecting Electromagnetic Coupling Modules and Radio IC Devices and Method for Manufacturing Electromagnetic Coupling Modules and Radio IC Devices Using the System”; U.S. Appl. No. 12/274,400, filed Nov. 20, 2008.
Kato: “Wireless IC Device”; U.S. Appl. No. 11/964,185, filed Dec. 26, 2007.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 12/336,629, filed Dec. 17, 2008.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/339,198, filed Dec. 19, 2008.
Ikemoto et al.: “Wireless IC Device”; U.S. Appl. No. 11/851,651, filed Sep. 7, 2007.
Kataya et al.: “Wireless IC Device and Electronic Device”; U.S. Appl. No. 11/851,661, filed Sep. 7, 2007.
Dokai et al.: “Antenna and Radio IC Device”; U.S. Appl. No. 12/350,307, filed Jan. 8, 2009.
Official Communication issued in International Application No. PCT/JP2007/066007, mailed on Nov. 27, 2007.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/359,690, filed Jan. 26, 2009.
Dokai et al.: “Test System for Radio Frequency IC Devices and Method of Manufacturing Radio Frequency IC Devices Using the Same”; U.S. Appl. No. 12/388,826, filed Feb. 19, 2009.
Official Communication issued in International Application No. PCT/JP2008/061955, mailed on Sep. 30, 2008.
Official Communication issued in International Application No. PCT/JP2007/066721, mailed on Nov. 27, 2007.
Official Communication issued in International Application No. PCT/JP2007/070460, mailed on Dec. 11, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/390,556, filed Feb. 23, 2009.
Kato et al.: “Inductively Coupled Module and Item With Inductively Coupled Module”; U.S. Appl. No. 12/398,497, filed Mar. 5, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/050945, mailed on May 1, 2008.
Kato et al.: “Article Having Electromagnetic Coupling Module Attached Thereto”; U.S. Appl. No. 12/401,767, filed Mar. 11, 2009.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 12/326,117, filed Dec. 2, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/061442, mailed on Jul. 22, 2008.
Kato et al.: “Container With Electromagnetic Coupling Module”; U.S. Appl. No. 12/426,369, filed Apr. 20, 2009.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/429,346, filed Apr. 24, 2009.
Official Communication issued in International Patent Application No. PCT/JP2010/066291, mailed on Dec. 28, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/432,002, filed Mar. 28, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070767, mailed on Feb. 22, 2011.
Ieki et al.: “Transceiver and Radio Frequency Identification Tag Reader”; U.S. Appl. No. 13/437,978, filed Apr. 3, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/065431, mailed on Oct. 18, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/470,486, filed May 14, 2012.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/789,610, filed May 28, 2010.
Kato: “Antenna and RFID Device”; U.S. Appl. No. 13/472,520, filed May 16, 2012.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/540,694, filed Jul. 3, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,108, filed Aug. 6, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,109, filed Aug. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/052594, mailed on May 17, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/585,866, filed Aug. 15, 2012.
Kato et al.: “Radio Communication Device and Radio Communication Terminal”; U.S. Appl. No. 13/600,256, filed Aug. 31, 2012.
Murayama et al.: “Wireless Communication Module and Wireless Communication Device”; U.S. Appl. No. 13/598,872, filed Aug. 30, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/069689, mailed on Oct. 4, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-552116, mailed on Apr. 17, 2012.
Tsubaki et al.: “RFID Module and RFID Device”; U.S. Appl. No. 13/603,627, filed Sep. 5, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,807, filed Sep. 6, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,801, filed Sep. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053656, mailed on May 17, 2011.
Official communication issued in counterpart European Application No. 08 77 7758, dated on Jun. 30, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103741, mailed on May 26, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103742, mailed on May 26, 2009.
Official communication issued in International Application No. PCT/JP2008/050358, mailed on Mar. 25, 2008.
Official communication issued in International Application No. PCT/JP2008/050356, mailed on Mar. 25, 2008.
Osamura et al.: “Packaging Material with Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,663, filed Aug. 6, 2009.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,669, filed Aug. 6, 2009.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device,” U.S. Appl. No. 12/543,553, filed Aug. 19, 2009.
Shioya et al.: “Wireless IC Device,” U.S. Appl. No. 12/551,037, filed Aug. 31, 2009.
Ikemoto: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/579,672, filed Oct. 15, 2009.
Official communication issued in International Application No. PCT/JP2008/058614, mailed on Jun. 10, 2008.
Official Communication issued in International Patent Application No. PCT/JP2011/068110, mailed on Sep. 20, 2011.
Dokai et al.: “Antenna and Wireless Communication Device”; U.S. Appl. No. 13/613,021, filed Sep. 13, 2012.
Takeoka et al.: “Printed Wiring Board and Wireless Communication System”; U.S. Appl. No. 13/616,140, filed Sep. 14, 2012.
Dokai: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/688,287, filed Nov. 29, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/067127, mailed on Oct. 18, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/691,996, filed Dec. 3, 2012.
Yosui: “Antenna Apparatus and Communication Terminal Instrument”; U.S. Appl. No. 13/706,409, filed Dec. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/071795, mailed on Dec. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/738,143, filed Jan. 10, 2013.
Official Communication issued in International Patent Application No. PCT/JP2011/074009, mailed on Dec. 20, 2011.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 13/754,972, filed Jan. 31, 2013.
Kimura et al.: “Electrical Product”; U.S. Appl. No. 13/757,991, filed Feb. 4, 2013.
Nakano et al.: “Communication Terminal Device”; U.S. Appl. No. 13/760,196, filed Feb. 6, 2013.
Official Communication issued in International Patent Application No. PCT/JP2011/073054, mailed on Dec. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2011/073490, mailed on Jan. 10, 2012.
Kato et al.: “Antenna Device and Communication Terminal Apparatus”; U.S. Appl. No. 13/761,195, filed Feb. 7, 2013.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/767,960, filed Feb. 15, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/058884, mailed on Jun. 12, 2012.
Dokai et al.: “Wireless Communication Device”; U.S. Appl. No. 13/782,346, filed Mar. 1, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/053344, mailed on May 22, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/053496, mailed on Jun. 1, 2010.
Ikemoto: “Wireless IC Tag, Reader-Writer, and Information Processing System”; U.S. Appl. No. 13/329,354, filed Dec. 19, 2011.
Kato et al.: “Antenna and Antenna Module”; U.S. Appl. No. 13/334,462, filed Dec. 22, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069418, mailed on Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/063082, mailed on Nov. 16, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/412,772, filed Mar. 6, 2012.
“Antenna Engineering Handbook”, The Institute of Electronics and Communication Engineers, Mar. 5, 1999, pp. 20-21.
Official Communication issued in International Patent Application No. PCT/JP2010/066714, mailed on Dec. 14, 2010.
Nomura et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/419,454, filed Mar. 14, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070607, mailed on Feb. 15, 2011.
Ito: “Wireless IC Device and Method of Detecting Environmental State Using the Device”; U.S. Appl. No. 13/421,889, filed Mar. 16, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053654, mailed on Mar. 29, 2011.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/425,505, filed Mar. 21, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/069416, mailed on Feb. 8, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/429,465, filed Mar. 26, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/055344, mailed on Jun. 14, 2011.
Kubo et al.: “Antenna and Mobile Terminal”; U.S. Appl. No. 13/452,972, filed Apr. 23, 2012.
Ikemoto: “RFID System”; U.S. Appl. No. 13/457,525, filed Apr. 27, 2012.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/468,058, filed May 10, 2012.
Official communication issued in Japanese Application No. 2007-531524, mailed on Sep. 11, 2007.
Official communication issued in Japanese Application No. 2007-531525, mailed on Sep. 25, 2007.
Official communication issued in Japanese Application No. 2007-531524, mailed on Dec. 12, 2007.
Official communication issued in European Application No. 07706650.4, mailed on Nov. 24, 2008.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 11/624,382, filed Jan. 18, 2007.
Dokai et al.: “Wireless IC Device, and Component for Wireless IC Device”; U.S. Appl. No. 11/930,818, filed Oct. 31, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/042,399, filed Mar. 5, 2008.
Official communication issued in related U.S. Appl. No. 12/042,399; mailed on Aug. 25, 2008.
Official Communication issued in International Patent Application No. PCT/JP2009/069486, mailed on Mar. 2, 2010.
Kato: “Radio IC Device”; U.S. Appl. No. 13/080,775, filed Apr. 6, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/083,626, filed Apr. 11, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/070617, mailed on Mar. 16, 2010.
Nagai, “Mounting Technique of RFID by Roll-To-Roll Process”, Material Stage, Technical Information Institute Co., Ltd, vol. 7, No. 9, 2007, pp. 4-12.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/088,480, filed Apr. 18, 2011.
Kato et al.: “High-Frequency Device and Wireless IC Device”; U.S. Appl. No. 13/094,928, filed Apr. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/099,392, filed May 3, 2011.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 13/163,803, filed Jun. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/050170, mailed on Apr. 13, 2010.
Official Communication issued in International Patent Application No. PCT/JP2010/051205, mailed on May 11, 2010.
Kato: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/169,067, filed Jun. 27, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/190,670, filed Jul. 26, 2011.
Shiroki et al.: “RFIC Chip Mounting Structure”; U.S. Appl. No. 13/223,429, filed Sep. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056559, mailed on Jul. 27, 2010.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 13/232,102, filed Sep. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/056934, mailed on Jun. 30, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/903,242, filed Oct. 13, 2010.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/940,103, filed Nov. 5, 2010.
Kato et al.: “Wireless IC Device System and Method of Determining Authenticity of Wireless IC Device”; U.S. Appl. No. 12/940,105, filed Nov. 5, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059669, mailed on Aug. 25, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/062181, mailed on Oct. 13, 2009.
Official Communication issued in corresponding Japanese Application No. 2010-501323, mailed on Apr. 6, 2010.
Kato et al.: “Component of Wireless IC Device and Wireless IC Device”; U.S. Appl. No. 12/944,099, filed Nov. 11, 2010.
Kato et al.: Wireless IC Device and Manufacturing Method Thereof; U.S. Appl. No. 12/961,599, filed Dec. 7, 2010.
Kataya et al.: “Radio Frequency IC Device and Electronic Apparatus”; U.S. Appl. No. 12/959,454, filed Dec. 3, 2010.
Ikemoto et al.:“Radio IC Device”; U.S. Appl. No. 12/981,582, filed Dec. 30, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/062801, mailed on Oct. 27, 2009.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/022,695, filed Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/067778, mailed on Jan. 26, 2010.
Kato: “Wireless IC Device and Method for Manufacturing Same”; U.S. Appl. No. 13/022,693, filed Feb. 8, 2011.
Kato: “Wireless IC Device”; U.S. Appl. No. 13/080,781, filed Apr. 6, 2011.
Related Publications (1)
Number Date Country
20130200162 A1 Aug 2013 US
Continuations (1)
Number Date Country
Parent PCT/JP2012/050557 Jan 2012 US
Child 13792650 US