RFID scanning device

Information

  • Patent Grant
  • 10482292
  • Patent Number
    10,482,292
  • Date Filed
    Tuesday, October 3, 2017
    7 years ago
  • Date Issued
    Tuesday, November 19, 2019
    5 years ago
Abstract
Systems, devices and methods for performing inventory management using RFID technology. The system includes a box for receiving one or more items containing RFID tags. Items are scanned against a baseline content data to confirm all items are present and whether any items have expired. The box has security features to prevent unauthorized access to its contents and create an audit trail of access. Access to the box may be granted when a user presents an authorized RFID-enabled card, wrist band, or other item. Multiple locking features provide for additional security. Scanning, authorization, and notification functions may be controlled locally by a processing unit contained within the box itself or remotely by an outside server.
Description
TECHNICAL FIELD

Exemplary embodiments of the present invention relate generally to RFID scanning systems, devices and methods, and more specifically those used for managing and securing critical inventories, such as medication kits and prescription drugs.


BACKGROUND OF THE INVENTION

RFID (radio-frequency identification) technology has seen adoption for many uses, such as advertising, transportation, shipping and general inventory management, for instance. Tagging and tracking items with RFID technology in inventory stock is generally done to decrease latency in the reporting of inventory information and to increase the accuracy in the information being reported. In many use cases, the application of RFID technology to inventory management procedures can produce significant gains in a business's efficiency and speed of operations, and further permits the use of electronic tracking and large-scale inventory information analysis often used for further improvements systemically.


RFID technology in general, however, has some disadvantages that can be magnified in certain potential use cases. In some industries, coping with these types of issues has led to a slower rate of deployment of the technology in general. For example, in the medical industry, accuracy of the objects being inventoried (typically medication) is critical.


The medical professionals using the inventoried medication need to consistently have particular medications available to them. Known RFID inventory technology is insufficient, however, due to problem with the labor-intensive creation of such RFID devices, inability to provide bulk scanning, and the actual or potential inaccurate RFID readings due to electromagnetic interference and leakage which can cause inaccuracies in the gathered data.


There is, therefore, an unmet need in the prior art for a highly accurate bulk scanning RFID inventory device that is relatively easy and cost efficient to manufacture. There is also an unmet need for a scanning RFID inventory device that is secure. Pain killers and other medications are commonly subject to theft. Furthermore, there are many settings outside of the traditional hospital or medical office that store medications or supplies. For example, fire stations often store pain killers and/or sedatives for use in their ambulances. There is an increasing amount of theft of pain killers and other medications from fire stations and other facilities. It is, therefore, desirable to have a secure scanning device that limits access to authorized users. It is also desirable to have a scanning device that is compact and can be utilized in a variety of environments without the need for a pharmacy computer or computer station nearby. It is also desirable to have a scanning system that can communicate basic information in a simple way that can be understood by both medical and non-medical personnel.


BRIEF SUMMARY OF THE INVENTION

Exemplary embodiments of the present disclosure pertain to an RFID box that is comprised of a conductive metallic material so as to insulate it from electromagnetic interference. The RFID box comprises a hinged door that is biased open but held shut by latches. Preferably, the door is hinged at the top of the RFID box. The RFID box may comprise an RFID antenna and a RFID antenna/reader, both of which are configured to read RFID tags placed within the RFID box. A pass-through device is preferably located on the rear wall of the RFID box which provides a channel for the passage of a communications wire and power supply.


The box may be formed by one C-shaped enclosure and a pair of open top box shaped side panels such that the enclosure and the side panels form a lip around the front aperture of the RFID box. The hinged door may be hung from the top of the enclosure such that it covers said front aperture when placed in the closed position. A gasket may run the perimeter of the lip to prevent electromagnetic leakage.


The RFID box may be in communication with a remote server and electronic device. The RFID box may transmit baseline data regarding the inventory placed within the RFID box and current content data regarding the inventory current located in the RFID box to the remote server. The remote server may compare the data and send a summary of the comparison to the electronic device.


In an alternative embodiment, the RFID box may comprise a housing surrounding an interior cavity, where the housing has a front side with an aperture for receiving one or more items into said interior cavity. The housing may have a door adapted to move between an open position (allowing access to the interior cavity) and a close position where such access is prohibited. The RFID box may have an antenna and an antenna/reader for communicating with and receiving information from one or more RFID tags located within the interior cavity. The RFID box may have a local processor that is within the housing. The processor may communicate with the antenna and antenna/reader to direct scanning of the items in the interior cavity and obtain RFID information that comprises, among other things, unique identifiers of each of the items. The processor may compare the results of a scan against baseline information previously received to determine if any items are missing and/or expired. The processor may also control access to the box by locking the box until and unless an authorized user, as identified by an RFID bracelet, badge, card, or other item, is recognized by an RFID reader located on the device. The processor may achieve this by being in electronic communication with an access control or audit system comprising one or more lock mechanisms, authentication mechanisms, access control units, and associated communicative coupling means. Magnetic and/or mechanical latches and locks may be used to keep the door securely shut when an authorized user is not accessing the box. The processor may further store access information in local memory and communicate such information to a remote server in order to create an audit trail of users that have obtained access to the interior cavity. Information regarding items scanned and the audit trail may be transmitted to a web portal or to electronic devices. In various embodiments the RFID box may have a variety of shapes and sizes as desired. In some embodiments the RFID box may be sized to receive a single tray of items, such as a crash cart tray, while in other embodiments the RFID box may be sized and shaped to receive multiple trays at the same time. The RFID box may have brackets, tabs, or other features that allow it to be secured to a wall for easy access. The box may also have a light that can visually communicate information to users including, for example, whether an item is missing, an item is expired, or whether an unauthorized user has accessed the device.


The RFID tags may comprise a thin tail section for attachment to the objects to be inventoried and a pair of tabs separated from one another by a perforation. The tabs may include an RFID antenna and indication markers such as serial number, bar codes, and QR codes. Furthermore, the tabs may be configured to be folded against one another such that they create a flag. Alternatively, the second tab, which has the RFID antenna, may be torn from the first tab and adhered directly to the object to be inventoried.


An object of the present invention is to provide an RFID bulk scanning device that can be manufactured with relatively minimal labor effort and cost.


It is a further object of this invention to provide an RFID bulk scanning device that can scan objects to be inventoried located therein with a high degree of accuracy.


It is a further object of this invention to provide an RFID bulk scanning device that prevents electromagnetic leakage and interference.


It is a further object of this invention to provide an RFID bulk scanning system that can compare the current contents of the RFID bulk scanning device with a baseline data to determine, among other things, whether an item is missing or expired.


It is a further object of this invention to provide an RFID tag that can work efficiently with said RFID bulk scanning device and system.


It is a further object of this invention to provide an RFID scanning device that is compact and has wide utility.


It is a further object of this invention to provide RFID scanning devices of the type generally described herein, being adapted for the purposes set forth herein, and overcoming disadvantages found in the prior art. These and other advantages are provided by the invention described and shown in more detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

Novel features and advantages of the present invention, in addition to those mentioned above, will become apparent to those skilled in the art from a reading of the following detailed description in conjunction with the accompanying drawings wherein identical reference characters refer to identical parts and in which:



FIG. 1 is a perspective view of an exemplary embodiment of RFID box in accordance with the present invention;



FIG. 2 is a perspective view of the device of the RFID box of FIG. 1 illustrated with the door removed to show in the interior of the RFID box;



FIG. 3 is a perspective view similar to FIG. 2 shown with some of the interior elements removed to further illustrate the interior of the RFID box;



FIG. 4 is a front perspective view of the RFID box of FIG. 1 illustrated with the door removed to show the interior of the RFID box;



FIG. 5 is a bottom view of the RFID box of FIG. 1;



FIG. 6 is a rear view of the RFID box of FIG. 1 indicating section line A-A;



FIG. 7A is a side sectional view taken along section line A-A of FIG. 6 and indicating Detail A;



FIG. 7B is a detailed side sectional view of Detail A shown in FIG. 7A;



FIG. 8 is a plan view of an exemplary system in accordance with the present invention;



FIG. 9 is a flow chart of exemplary logic for use with the system of FIG. 8 and in accordance with the present invention;



FIG. 10 is a front perspective view of another exemplary embodiment of the RFID box of the present invention;



FIG. 11 is a front perspective view of the device of FIG. 10 shown with the door in an opened position and indicating Detail B and Detail C;



FIG. 12 is a detailed front perspective view of Detail B shown in FIG. 11;



FIG. 13 is a detailed front perspective view of Detail C shown in FIG. 11;



FIG. 14 is a detailed front perspective view of an exemplary pass through device used with the RFID box of FIG. 10;



FIG. 15 is a perspective view of an inventory basket used with the RFID box of FIG. 10;



FIG. 16 is a perspective view of the RFID box of FIG. 11 with the inventory basket of FIG. 15 located therein;



FIG. 17A is a rear view of an exemplary RFID tag for use with the present invention;



FIG. 17B is a front view of the RFID tag of FIG. 17A;



FIG. 18 is a perspective view of an exemplary RFID distribution box;



FIG. 19 is a perspective partially transparent view of the device of FIG. 18;



FIG. 20 is an exploded view of the device of FIG. 18;



FIG. 21 is a top plan view of the device of FIG. 18 with transparency;



FIG. 22 is a front elevation view of the device of FIG. 18 with transparency;



FIG. 23 is a side elevation section view taken through line 23-23 of FIG. 22;



FIG. 24 is a front elevation view of the device of FIG. 18 with transparency;



FIG. 25 is a side elevation section view taken through line 25-25 of FIG. 24;



FIG. 26 is a perspective view of a further exemplary RFID distribution box;



FIG. 27 is a further perspective view of the device of FIG. 26;



FIG. 28 is another perspective view of the device of FIG. 26;



FIG. 29 is another perspective view of the device of FIG. 26;



FIG. 30 is another perspective view of the device of FIG. 26;



FIG. 31 is another perspective view of the device of FIG. 26;



FIG. 32 is a plan view of an element of a process control unit of the device of FIG. 26;



FIG. 33 is a plan view of an element of a process control unit of the device of FIG. 26.



FIG. 34 is a perspective view of a further exemplary RFID distribution box;



FIG. 35 is another perspective view of the device of FIG. 34;



FIG. 36 is a front elevation view of the device of FIG. 34; and



FIG. 37 is another perspective view of the device of FIG. 34.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 though FIG. 7B illustrate an exemplary embodiment of an RFID box 100 in accordance with the present invention. In exemplary embodiments of the present invention, the RFID box 100 is rectangular in shape and comprises a housing. The housing may comprise a door 114, an enclosure 110, and a pair of side panels 112. This is merely exemplary, as any size and shape RFID box 100 is contemplated along with any number of components constituting the housing of said RFID box 100.


The enclosure 110 may be C-shaped such that it forms the top, rear, and bottom surfaces of the housing and surrounds an interior cavity 113 that is accessible through the door 114. The enclosure 110 may additionally include a lip that extends vertically from the top and the bottom surfaces such that it forms a portion of the front surface of the housing and partially defines an aperture in the front surface of the housing. The pair of side panels 112 may be configured to fit within the enclosure 110 on either side thereof such that the side panels 112 forms the side surfaces of the RFID box 100. In exemplary embodiments of the present invention, the side panels 112 may be open top box shaped such that they likewise create a lip that protrudes inwardly from the left and right side panels such that it forms a portion of the front surface of the housing and partially defines an aperture in the front surface of the housing.


One or more hinges 118 may connect the door 114 to the housing such that the RFID box 100 is completely enclosed. In exemplary embodiments of the present invention, a pair of hinges 118 are located on the lip formed along the upper edge of the enclosure 110 and connect the door 114 to the enclosure 110. This may reduce sagging of the door 114 otherwise resulting from placing the hinges on the side of the RFID box 100. Sagging of the door 114 may create gaps in the RFID box 100 housing and result in electromagnetic leakage.


In exemplary embodiments of the present invention, the hinges 118 are continuous tension hinges that are configured to bias the door 114 in the opened position, preferably at a 170° angle from the front surface of the RFID box 100. The door 114 may be sized and located to cover the front of the RFID box 100 and be substantially flush with the side and bottom edges thereof, thereby preferably overlapping with at least a portion of the lip created by the enclosure 110 and the side panels 112. In exemplary embodiments of the present invention, the door 114 may comprise one or more tabs 116 that protrude beyond the side panels 112 to facilitate a user manipulating the door 114 between a closed position and an opened position. In other exemplary embodiments of the present invention, the door 114 may comprise pull handles, knobs, or other devices for opening and closing the door 114.


As best shown in FIG. 2 through FIG. 4, the lip extending around the front of the RFID box 100 may further comprise a number of latches 120. These latches 120 may be configured to temporarily secure the door 114 in the closed position against the housing. The latches 120 may be magnetic devices configured to interact with the door 114 itself or magnets located thereon such that the door 114 is held securely in place against the housing until acted upon by a user.



FIG. 2 through FIG. 4 also illustrates the interior of the RFID box 100. A pair of guide rails 122 may be used to guide an inventory basket 238 (best shown in FIGS. 15-16), tray, or other container for various objects to be inventoried. Any number, size, shape, or location of guide rails 122 are contemplated. In exemplary embodiments of the present invention, the guide rails 122 are configured to mate with the inventory basket 238 or other container and keep it centered as it is placed within the RFID box 100.


A gasket 132 may be located along the perimeter of the front surface of the housing for the RFID box 100. In exemplary embodiments, the gasket 132 may extend along the lip created by the enclosure 110 and the side panels 112. The gasket may be comprised of a conductive material and may be a foam, tape, pad, or the like. An RFID antenna 124 may be located along the bottom surface of the RFID box 100. The RFID antenna 124 may be configured to communicate with a series of RFID tags 300 (as shown in FIGS. 17A-C, for example). Preferably, the guide rails 122 are configured to keep the inventory basket 238 or other container above the RFID antenna 124 and thus prevent inadvertent contact or damage.


As best illustrated in FIG. 7A, an RFID antenna/reader 128 may be located along the top of the RFID box 100. The location of the RFID antenna 124 and RFID antenna/reader 128 are merely exemplary, any location is contemplated. Further, any number of RFID antennas 124 and RFID antenna/reader 128 are contemplated. The RFID antenna 124 and the RFID antenna/reader 128 may be electrically connected, preferably by a wire 130. The wire 130 may comprise wire for supplying power to components of the RFID box 100, including, but not limited to, the RFID antenna 124 and the RFID antenna/reader 128, as well as wire for facilitating the communication of data to and from components of the RFID box 100, including but not limited to the RFID antenna 124 and the RFID antenna/reader 128. In order to minimize electromagnetic leakage, the wire 130 may exit the RFID box 100 thorough a pass through device 126.


In exemplary embodiments of the present invention, the pass through device 126 may be configured to cover the aperture in the RFID box 100 where the wire 130 passes outside of the RFID box 100. The pass-through device 126 may comprise an enclosure defining a channel which extends along the rear wall of the RFID box 100 for the wire 130 to pass through. The pass through device 126 may be fastened, welded, or otherwise adhered to the inside rear wall of the RFID box 100. Preferably, conductive tape is used along the seams between the pass through device 126 and the RFID box 100 to minimize electromagnetic leakage. The pass through device 126 may comprise a coupler 134 (as best illustrated in FIG. 7B) that connects the internal wire 130 to an external wire 131. The coupler 134 may be configured to substantially seal the aperture otherwise required to allow the wire 130 to pass outside of the RFID box 100. In exemplary embodiments of the present invention, the coupler 134 may be a female to female Ethernet and power connector.


One or more mechanical stops 119 may be located along the rear wall of the RFID box 100, though such is not required. The mechanical stops 119 may be configured to prevent the inventory basket 238 or other container from contacting the pass through device 126 and/or the rear wall of the RFID box. In other exemplary embodiments of the present invention, the pass through device 126 may act as a mechanical stop 119.


The components of the RFID box 100, including, but not limited to, the enclosure 110, the side panels 112, and the pass-through device 126 may be fastened, welded, adhered, or otherwise secured in their respective locations preferably by conductive materials. Conductive tape or other conductive material may be additionally placed along the seams of the components of the RFID box 100 so as to minimize RFID leakage. These components may be comprised of a metallic, conductive material such as, but not limited to, aluminum. Specifically, they may be comprised of ⅛″ thick aluminum, though any thickness is contemplated. The use of a conductive material may serve to substantially electromagnetically “seal” the RFID box 100, thus minimizing RFID leakage, which thereby ensures accuracy in RFID readings by ensuring that the RFID antenna 124 and RFID antenna/reader 128 only detect RFID signals being emitted from within the RFID box 100.



FIG. 8 is a plan view of an exemplary system in accordance with this invention. The system may comprise the RFID box 100, a server 140, and an electronic device 150. The RFID box 100 may be electrically connected to the server 140, which may be electrically connected to the electronic device 150. The electrical connection may be wired or wireless. In exemplary embodiments of the present invention, the server 140 is located remote from the RFID box 100 and the electronic device 150. For example, without limitation, the server 140 may be a cloud based data storage and processing server. Likewise, the electronic device 150 may be located remote from the server 140 and the RFID box 100. The RFID box 100, server 140, and electronic device 150 may be connected via the world wide web, the internet, intranet, or other communications network. The electronic device 150 may be a laptop, personal computer, tablet, smart phone, or the like.



FIG. 9 is a flow chart of exemplary logic for use with the system of FIG. 8. Initially, the RFID box 100 may perform a scan of the inventory located therein. This may be accomplished by known methods. The data pertaining to contents of the RFID box 100 and related information are hereinafter referred to as the baseline box content data. In other exemplary embodiments of the present invention, the baseline box content data may be generated in whole or part by manual entry. This baseline box content data may include the contents of the RFID box 100, names for the contents, serial numbers, and the like. For example, but without limitation, the RFID box 100 may be used in a medical setting for the inventory of medications. In such a case, the baseline box content data may include the number, type, name, expiration date, prescribing physician, date stored, date removed, and the like for each medication in the RFID box 100. Of course, this application is merely exemplary and is not intended to be limiting. Any application for the RFID box 100 is contemplated.


The baseline box content data may be transmitted to and stored on the server 140. At a later time, the contents of the RFID box 100 may be scanned and the data recorded, this data is hereinafter referred to as the current box content data. The current box content data may then be transmitted to the server 140 for storage and processing. The server 140 may compare the current box content data with the baseline box content data and produce summary of the comparison, hereinafter referred to as the comparison data. The comparison data may then be transmitted to the electronic device 150 for display.



FIG. 10 through FIG. 16 illustrates another exemplary embodiment of the present invention. In these figures, like elements have been labeled similarly to the first embodiment (e.g., RFID box 200, interior enclosure 213, door 214, tabs 216, guide rails 222, etc.). FIG. 11 through FIG. 13 illustrate how the latches 220 may interact. For example, the latches 220 may be magnetic devices placed on the lip of the RFID box 200 and may be configured to interact with a series of magnets 221 placed on the door 214. The magnets may be located and oriented such that they are attracted to one another and hold the door 214 shut when the door 214 is located in a closed position.



FIG. 14 illustrates the rear view of and interior of another exemplary pass through device 226. In the present embodiment, the pass-through device 226 may be substantially rectangular in shape and contain the coupler 234 positioned on a bottom portion thereof and extended between a plate that substantially fills the interior of the pass-through device 226.


In exemplary embodiments of the present invention, as illustrated in FIGS. 15 and 16, the inventory basket 238 may be sized and configured to substantially fill the interior cavity of the RFID box 200. The inventory basket 238 may comprise grab handles 239 for ease of use.



FIGS. 17A and 17B illustrate an exemplary RFID tag 300 for use with the present invention. The RFID tag 300 may comprise a tail section 302 connected to a first tab 304, which is connected to a second tab 306. The first tab 304 and the second tab 306 may be separated by a perforation 308. Some or all of the rear surface of the RFID tag 300 may comprise an adhesive such that the RFID tag 300 may be placed on an object to be inventoried, such as, but not limited to, a medication container. The tail section 302 may be sized and configured to wrap around an object to be inventoried such that the first tab 304 sticks out from the object to be inventoried. Preferably, the tail section 302 has a reduced thickness relative to the first and second tabs 304 and 306 such that the object to be inventoried can be clearly seen. For example, without limitation, if placed around a medicine container, the label on the container and the drug itself can be clearly viewed. The second tab 306 may be removed, preferably along the perforation 308, and adhered to an object to be inventoried. In other exemplary embodiments, the second tab 306 may be folded onto the first tab 304 along the perforation 308 to form a flag.


The first tab 304 and the second tab 306 may each comprise an identification number 312 and/or a code 314 such as, but not limited to, a bar code, QR code, or the like. The second tab 306 may further comprise an RFID antenna 310 configured to communicate with the RFID antennas 124 and the RFID antenna/reader 128.


In an exemplary embodiment, each tab 306, 304 has a length of approximately 1.189 inches and a height of 0.6 inches. The tail has a height of 0.188 inches. The RFID tag 300 has an overall length of 4.75 inches, prior to any folding. The RFID tag has a thickness of 0.005 inches. In other embodiments, the dimensions of the RFID tag may vary as desired. Any size, shape, or design of the RFID tag 300 is contemplated.


A further exemplary embodiment of the invention that includes access control and auditing features is depicted in connection with FIGS. 18-25. In applications in which the present invention is deployed in connection with control substance inventories and other similarly controlled and dangerous items, it may be desirable for access to such inventories to be monitored and controlled. In the case of pharmaceutical deployment, for instance, such as at a healthcare facility, drugs inventoried utilizing the RFID box discussed herein may be distributed about the facility for use and expedient access during the provision of healthcare services. For example, distribution boxes such as box 400 may be placed in convenient locations throughout a facility for access by healthcare professionals, patients and the like, as needed.


In some embodiments, the distribution boxes may be networked with an inventory system such as shown in connection with FIG. 8 above, and may log deposits and withdraws of an inventory kit or basket and the contents thereof at each event. In other embodiments, the distribution boxes may be configured to authenticate a user attempting to access the box before access is granted. In some of these embodiments, the distribution boxes may further or separately track box access for audit purposes or regulatory compliance, for example, such as for use in furthering Joint Commission (JCAHO) compliance goals.


An exemplary embodiment of the distribution box 400 is shown with Faraday cage construction shielding methods similar to those described in connection with the RFID box 100. An enclosure 410 may be C-shaped such that it forms the top 402, rear 404, and bottom 406 surfaces of the housing. The enclosure 410 may additionally include lips 408 and 409 that extend vertically from the top 402 and the bottom 406 surfaces such that it forms a portion of the front surface of the housing and partially defines an aperture 411 in the front surface of the housing. In some embodiments, it may be convenient to mount the invented distribution box 400 on a vertical surface, such as the wall of a hospital operating room or patient room, such that mounting brackets 413 are provided for securing said box 400 to said vertical surface. A pair of side panels 412 may be configured to fit within the enclosure 410 on either side thereof such that the side panels 412 forms the side surfaces of the distribution box 400. In exemplary embodiments of the present invention, the side panels 412 may be open top box shaped such that they likewise create a lip that protrudes inwardly from the left and right side panels such that it forms a portion of the front surface of the housing and partially defines an aperture 411 in the front surface of the housing.


One or more hinge mechanisms 418 may connect the door 414 to the housing such that the distribution box 400 is completely enclosed. In an exemplary embodiment of the present invention, one or more hinges 418 are located on the lip formed along the upper edge of the enclosure 410 and connect the door 414 to the enclosure 410. This may reduce sagging of the door 414 otherwise resulting from placing the hinges on the side of the distribution box 400. Sagging of the door 414 may create gaps in the distribution box 400 housing and result in electromagnetic leakage, which is undesirable in applications in which the inventory items in a kit are being logged.


In exemplary embodiments of the present invention, the hinges 418 are continuous tension hinges that are configured to bias the door 414 in the opened position, preferably at a 170° angle from the front surface of the distribution box 400. The door 414 may be sized and located to cover the front of the distribution box 400 and be substantially flush with the side and bottom edges thereof, thereby preferably overlapping with at least a portion of the front face of the box 400 created by the lips of the enclosure 410 and the side panels 412. In exemplary embodiments of the present invention, the door 414 may comprise one or more tabs 416 that protrude beyond the side panels 412 to facilitate a user manipulating the door 414 between a closed position and an opened position. In other exemplary embodiments of the present invention, the door 414 may comprise pull handles, knobs, or other devices for opening and closing the door 414.


As best shown in FIG. 20, the lip extending around the front of the distribution box 400 may further comprise a number of latches 420. The latches 420 may be configured to temporarily secure the door 414 in the closed position against the housing. The latches 420 may be magnetic devices configured to interact with the door 414 itself, magnets located thereon such that the door 414 is held securely in place against the housing until acted upon by a user, or similar spring-biased mechanical equivalents, for example.


A gasket 432 may be located along the perimeter of the front surface of the housing for the distribution box 400. In exemplary embodiments, the gasket 432 may extend along the lip created by the enclosure 410 and the side panels 412. The gasket 432 may be comprised of a conductive material and may be a foam, tape, pad, or the like. The door 416 may further be provided with additional insulation or electromagnetic shielding material, as at 417. Similarly, an interior enclosure 419 with an open face may be affixed within the enclosure 410 and generally within the box 400, wherein the open face 421 is aligned with the aperture 411. The interior enclosure 419, which surrounds the interior cavity 415, may be used to provide additional electromagnetic insulative capacity to the box 400, and provide a smooth working surface for inventory storage.


A control system 450 is also provided in the exemplary embodiment shown in connection with FIGS. 18-25. In some embodiments, the control system 450 is utilized as an access control or audit system, an inventory tracking system, or a combination thereof. In some embodiments, the distribution box 400 may be configured with an access control or audit system 450 that includes a lock mechanism 452, and authentication mechanism 454, an access control unit 456 and associated communicative coupling means 458. The distribution box 400 may also be provided with a latch 420 secured to the door 416 corresponding to and complementary to said locking mechanism 452, whereupon the door 416 is secured in default a closed position in which the box 400 cannot be opened to access its contents without proper authentication via the authentication means 454.


Depending upon the deployment environment, the authentication means 454 may be provided in a manner conducive and complementary to existing authentication means already in use at a location. For example, a lock access point may be provided which includes an RFID antenna located at a surface of the distribution box 400. The RFID antenna may be configured to communicate with a series of RFID tags 300 (as shown in FIGS. 17A-C, for example), an ID badge, or wrist band, such as the wrist band 460 depicted in connection with FIG. 20. In some embodiments, the authentication means 454 is an RFID antenna secured to the distribution box 400 outside of the shielded envelop of the box 400. When a user wearing an RFID-enabled wrist band 460 or other similar device passes the device 460 in close proximity to the lock access point 454, the RFID antenna receives the ID transmitted by the band 460, and passes the signal via conductive wire 458 to an access control unit 456 for further processing.


An electronic lock mechanism 452 is provided to couple to the door latch 420 to prevent unauthorized access to the contents of the distribution box 400. This lock receives actuation signals from the access control unit 456 via conductive wires 458, which in turn receives and processes inputs from the lock access mechanism 454. In some embodiments, RFID-enabled cards, badges, wrist bands, or bracelets 460 are provided to users, such as hospital staff, and the access control unit 456 is programmed to open the lock mechanism 452 upon a successful scan of a predetermined ID range received at the lock access device 454. In other embodiments, the distribution box 400 may be networked with the RFID inventory box system (see, e.g., FIG. 8) which it may query to determine authorized ID ranges. In the latter case, temporary ID bracelets 460 may be issued, such as for patients, wherein access to a distribution box 400 is restricted to a particular location (e.g., the patient's room) or a particular length of time (e.g., during a hospital stay).


Importantly, the invented distribution box 400 and access control system 450 may be configured to log access to the distribution box 400, either locally in a memory unit of the access control unit 456 or remotely (e.g., 150 in FIG. 8). Therefore, the distribution box 400 ensures an audit trail is created of inventory access at a granular level. A user desiring to view the audit trail may do so by accessing a web portal that provides information about the status and history of items in the box, as well as the users that have accessed the box. The web portal may also be used to change settings, including which users (RFID-enabled cards, wrist bands, or bracelets) are authorized to access the box.


In some embodiments, the lock access mechanism 454 may be configured with other alternative types of access readers, as is desired in a particular application. For example, the lock access mechanism could be provided as an RFID antenna, a biometric reader, a proximity induction-based card reader, a mag-stripe reader, a keypad, or a combination thereof.


In some cases, the distribution box 400 may further include an internal RFID antenna as part of the access control unit 456 for tracking and logging inventory items present both before and after an access event. While the box 400 may be configured with a targeted RF leak at the location of the lock access mechanism 454, exemplary embodiments may include two antennas (internal and external) shielded from one another to track box access and inventory levels. Network access, power source or both for the access control unit 456 may be achieved, for example, via an Ethernet pass-through 462 in the housing 410. Those skilled in the art will appreciate that, while an exemplary configuration of the lock 452 and latch 420 mechanism, lock access reader mechanism 454, access control unit 456 and pass-through 462 is shown in connection with FIGS. 18-25, other suitable configurations are possible without departing from the scope of the instant invention as needed for a particular application. Those skilled in the art will also appreciate that in other exemplary embodiments the box 400 may include a mechanical lock that can be accessed with a physical key in addition to the lock access mechanism. The mechanical lock may provide secondary security or be configured to override the lock access mechanism 454. In such an embodiment, the key may be used to open the box when the power is out.


The components of the distribution box 400, including but not limited to the enclosure 410 and the side panels 412, may be fastened, welded, adhered, or otherwise secured in their respective locations preferably by conductive materials. Conductive tape or other conductive material may be additionally placed along the seams of the components of the RFID box 400 so as to minimize RFID leakage. These components may be comprised of a metallic, conductive material such as, but not limited to, aluminum. Specifically, they may be comprised of ⅛″ thick aluminum, though any thickness is contemplated. The use of a conductive material may serve to substantially electromagnetically “seal” the distribution box 400 thus minimizing RFID leakage, which thereby ensures accuracy in RFID readings by ensuring that an RFID antenna and RFID antenna/reader only detect RFID signals being emitted from within the RFID box 400 for accuracy and efficacy in inventory tracking procedures.


A second exemplary embodiment of a distribution box 500 and its components are shown in connection with FIGS. 26-33. FIG. 26 depicts the exterior of the exemplary box 500, which is formed of a C-shaped housing 510, side panels 512 and a door 514. A lock access mechanism 554 is mounted to the side panel 512, and in this embodiment is an HID-brand proximity card reader unit. In other embodiments, other alternative access mechanisms may be substituted or used in conjunction with such an element as discussed above. Ethernet 564 and power 566 are shown leading to the control unit 556 inside of the enclosure 510. FIG. 30 also depicts the box 500 from a rearward side perspective, and illustrates the entry point of the network cable 564 and mounted reader unit 554.



FIG. 27 illustrates the box 500 with the door 514 in the open position, hinged to the left side of the enclosure 510. The latch 520 is fixed to the right side of the door 514 in a position for complementary mating registration with the electronic latch 552 secured to the box 500 at the lower end of the right side panel 512, below the access reader unit 554. An interior enclosure 519 with an open face is affixed within the enclosure 510 and generally within the box 500. FIG. 28 is a perspective view of the right interior side of the box 500 with the interior enclosure removed. The electronic lock strike 552 is shown mounted therein.



FIG. 29 is a further perspective view of the interior of the box 500 with the interior enclosure 519 removed, primarily focused on the upper portion of the box interior. Here, the elements of the access control unit 556 can be seen, as well as electric connections 558 coupling the components of the control system generally. In this exemplary embodiment, the control unit of the box 500 can be seen to include a processing unit 570, a lock mechanism 552, connections 558, RFID reader 572 and access reader unit 554. In this embodiment, the box 500 is provided with a ThingMagic M6E-MICRO RFID reader unit 572, which is used to receive RFID signals from inventory items and kit baskets placed within or removed from the box 500. The processing unit 570 utilizes a Raspberry Pi 3 Model B Motherboard for processing the RFID information received from the reader 572 and the access reader unit 554, and handling network communications and lock mechanism 552 actuation. FIG. 31 shows a second view of the reader unit 572 for clarity.



FIGS. 32 and 33 depict components of the processing unit 570 used in this exemplary embodiment. The Raspberry Pi 3 Model B Motherboard 580 is shown in FIG. 32, and a daughter card 582 is shown in FIG. 33. The daughter card 582 is secured to the motherboard 580 via threaded fasteners (not shown) screwed into the threaded mounts 584 on the motherboard, via apertures 586 in the daughter card. The daughter card provides the necessary circuitry for actuation of the lock mechanism 552 with suitable boosts to voltage.


In certain embodiments, the processing unit 570 allows for local processing of authorization requests and comparison of baseline information against inventory scans. While changes in user roles and changes to baseline information may be effected through a web portal, the box 500 can perform many operations locally, allowing it to maintain operability even when network/internet connection is unavailable.


Another embodiment of a distribution box 600 having different shape and size is shown in connection with FIGS. 34 through 37. FIG. 34 depicts the exterior of the exemplary box 600, which is formed of a housing 610 and a door 614. In this embodiment, and as best seen in FIG. 37, the door hinges are comprised of tabs 620 formed from the same sheets of metal as the door and cabinet, with a bearing 622 in-between, providing for a seamless appearance. A lock access mechanism (not shown) and card reader unit (not shown) may be mounted to the housing 610 as desired. An interior enclosure 612 defines an interior cavity 613 for receiving items. The box and cavity may be sized to receive a single tray containing pharmaceutical items and/or other items. In an exemplary embodiment, the dimensions of the interior cavity 613 may be 24.5 inches in width, 3.875 inches in height, and 16.7 inches in depth. Of course, in other embodiments the dimensions of the interior cavity 613 may vary as desired. While this embodiment could be attached to a wall, it may also be placed on a surface such as a counter top or on top of a cabinet 700, as shown in FIG. 37. In some embodiments the box may contain bottom brackets allowing it to be secured to surface. The compact nature of the box allows it to be used in locations that may have little space available, such as a fire station.


As shown in FIGS. 35 and 36, the box 600 has four adjustable feet 615, each located at a bottom corner of the box, which may be adjusted as necessary to allow the box 600 to be level or avoid wobbling when in use.


The box 600 may have a status light 617 located on the housing. The status light 617 may display one or more colors that communicate information to a user. In an exemplary embodiment, the light can turn green, orange and red. When a scan reveals that all items are present, and all items are unexpired, the light 617 may be green. A user can take one look at the box and upon seeing the green light know that there is no need to replace any expired items, and that all items are present. The light 617 turns orange when one or more items are expired, providing a visual notification to the user that restocking is necessary. When the scan indicates that according to baseline box content data an item is missing, the box may turn red, again providing a visual notification to the user that restocking is necessary and possibly a review of the audit records is necessary as well to see what user removed the item. Of course, in different embodiments, the light may be configured in different ways. The light may be an LED light in electronic communication with the motherboard 580. The box 600 may be powered by PoE (power over ethernet) or other means. An ethernet port may be located on its back side or other surface. In some embodiments, the box may include a battery to allow it to remain operable when the power goes out or during transport.


This embodiment may have a mechanical lock in addition to the lock operated by the lock access mechanism. The mechanical lock may be completely separate to and provide a secondary level of security to the lock access mechanism. This may allow for increased security. The mechanical lock may also be configured to override the lock access mechanism in times when the power is out or in other emergency situations.


Different embodiments may also have a display screen integrated into the box itself to provide written notifications to users. For example, the screen may display the name of a pharmaceutical item that has expired along with its expiration date. In some embodiments, the screen may display the name of the last user that has accessed the box. The screen may be sized such that it can only provide a few words to a user or it may be larger and even have touch-screen capabilities to allow users to configure settings, enter queries, or otherwise obtain information about contents and access history.


It will be appreciated by one of ordinary skill in the art that a box shaped like the embodiment in FIGS. 34 through 37 may contain many of the features shown in other embodiments of the figures as desired to provide a convenient solution to a consumer.


Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A device for scanning and tracking RFID-tagged inventory comprising: a housing surrounding an interior cavity, said housing having a front side with an aperture for receiving one or more items into said interior cavity;a door, said door adapted for movement between an open position allowing access to said interior cavity and a closed position preventing access to said interior cavity;at least one RFID antenna located within said interior cavity; said antenna configured to communicate with one or more RFID tags;at least one RFID antenna/reader located within said interior cavity; said antenna/reader configured to communicate with one or more RFID tags;a processor, said processor in electronic communication with said at least one RFID antenna and said at least one RFID antenna/reader; andat least two guide rails adapted to support an inventory container that contains RFID-tagged inventory, said at least two guide rails located on an interior bottom surface of said inner cavity such that said at least one RFID antenna is positioned between said at least two guide rails on said interior bottom surface of said inner cavity and further such that said at least two guide rails are adapted to keep an inventory container that contains RFID-tagged inventory above said at least one RFID antenna to limit inadvertent contact with said at least one RFID antenna;wherein, said processor is adapted to instruct said at least one RFID antenna and said at least one RFID antenna/reader to perform a scan to identify items present in said interior cavity.
  • 2. The device of claim 1, wherein said housing is comprised of a c-shaped enclosure and a pair of side panels.
  • 3. The device of claim 1, wherein said door is biased in said open position.
  • 4. The device of claim 1, wherein said door further comprises at least one tab that protrudes beyond the side panels.
  • 5. The device of claim 1, wherein said door further comprises a lip around at least a portion of said aperture.
  • 6. The device of claim 1, further comprising at least one locking mechanism for securing said door in said closed position.
  • 7. The device of claim 6, wherein said device further comprises a lock access mechanism in communication with said at least one locking mechanism, said lock access mechanism able to communicate requests for access to said processor.
  • 8. The device of claim 7, wherein said processor is in communication with a memory for storing an audit trail of users that obtain access to said interior cavity.
  • 9. The device of claim 1, further comprising a light protruding from the surface of said housing, said light having at least one status that represents a notification for a user.
  • 10. The device of claim 1, further comprising at least one bracket for securing said device to a wall.
  • 11. The device of claim 1, wherein an interior enclosure comprised of electromagnetic shielding material is affixed within said housing and surrounds said interior cavity.
  • 12. The device of claim 1, wherein access information is communicated from said processor to a cloud based web server for eventual display on a user device.
  • 13. The device of claim 1, wherein said antenna/reader is able to receive information from a plurality of RFID tags placed on items located in said interior cavity.
  • 14. A system for scanning and tracking RFID-tagged inventory, comprising: a box for receiving one or more items, said box comprised of a housing that defines an opening, an interior enclosure located within said opening and comprised of electromagnetic shielding material, an antenna located within said opening and capable of communicating with one or more RFID tags, an antenna/reader located within said opening and capable of transmitting information received from said one or more RFID tags to a processor, and at least two guide rails adapted to support an inventory container that contains RFID-tagged inventory, said at least two guide rails located on an interior bottom surface of said interior enclosure such that said antenna is positioned between said at least two guide rails on said interior bottom surface of said interior enclosure and further such that said at least two guide rails are adapted to keep an inventory container that contains RFID-tagged inventory above said antenna to limit inadvertent contact with said antenna;a server, said server located remotely from said box and in wireless communication with said processor;one or more RFID tags, each of said one or more RFID tags adapted to be applied to an item, each of said RFID tags display unique identifying information.
  • 15. The system of claim 14, wherein said processor is capable of receiving baseline data from said server, and comparing said baseline data against information received from said one or more RFID tags.
  • 16. The system of claim 14, wherein said unique identifying information comprises an identification number.
  • 17. The system of claim 14, wherein said unique identifying information comprises a bar code.
  • 18. The system of claim 14, wherein said processor restricts access to said interior enclosure.
  • 19. The system of claim 14, wherein said box further comprises mounting brackets for securing said box to a wall.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/403,319 filed Oct. 3, 2016; and U.S. Provisional Application No. 62/465,329, filed Mar. 1, 2017. The contents of both of these provisional applications are hereby incorporated by reference as if fully recited herein.

US Referenced Citations (399)
Number Name Date Kind
4884827 Kelley Dec 1989 A
5713485 Liff et al. Feb 1998 A
5930145 Yuyama et al. Jul 1999 A
5963134 Bowers et al. Oct 1999 A
5986662 Argiro et al. Nov 1999 A
6112502 Frederick et al. Sep 2000 A
6189727 Shoenfeld Feb 2001 B1
6249299 Tainer Jun 2001 B1
6275157 Mays et al. Aug 2001 B1
6294999 Yarin et al. Sep 2001 B1
6330351 Yasunaga Dec 2001 B1
6574166 Niemiec Jun 2003 B2
6632619 Harrison et al. Oct 2003 B1
6771369 Rzasa et al. Aug 2004 B2
6825864 Botten et al. Nov 2004 B2
6847861 Lunak et al. Jan 2005 B2
6851615 Jones Feb 2005 B2
6861954 Levin Mar 2005 B2
6877658 Raistrick et al. Apr 2005 B2
6879876 O'Dougherty et al. Apr 2005 B2
6899626 Luciano et al. May 2005 B1
6900021 Harrison et al. May 2005 B1
6933849 Sawyer Aug 2005 B2
6935560 Andreasson et al. Aug 2005 B2
6952681 McQuade et al. Oct 2005 B2
6985870 Martucci et al. Jan 2006 B2
6992574 Aupperle et al. Jan 2006 B2
6994249 Peterka et al. Feb 2006 B2
7036729 Chung May 2006 B2
7061831 De La Huerga Jun 2006 B2
7111780 Broussard et al. Sep 2006 B2
7116343 Botten et al. Oct 2006 B2
7118029 Nycz et al. Oct 2006 B2
7140542 Andreasson et al. Nov 2006 B2
7146247 Kirsch et al. Dec 2006 B2
7151456 Godfrey Dec 2006 B2
7158030 Chung Jan 2007 B2
7165077 Kalies Jan 2007 B2
7175081 Andreasson et al. Feb 2007 B2
7177721 Kirsch et al. Feb 2007 B2
7178729 Shaffer et al. Feb 2007 B2
7182256 Andreasson et al. Feb 2007 B2
7212100 Terenna May 2007 B2
7212127 Jacober et al. May 2007 B2
7227469 Varner et al. Jun 2007 B2
7232066 Andreasson et al. Jun 2007 B2
7253736 Tethrake et al. Aug 2007 B2
7256699 Tethrake et al. Aug 2007 B2
7263501 Tirinato et al. Aug 2007 B2
7264323 Tainer et al. Sep 2007 B2
7268684 Tethrake et al. Sep 2007 B2
7275645 Mallett et al. Oct 2007 B2
7299981 Hickle et al. Nov 2007 B2
7316231 Hickle Jan 2008 B2
7317393 Maloney Jan 2008 B2
7318529 Mallett et al. Jan 2008 B2
7341147 Mallett et al. Mar 2008 B2
7348884 Higham Mar 2008 B2
7354884 Hada et al. Apr 2008 B2
7362228 Nycz et al. Apr 2008 B2
7375737 Botten et al. May 2008 B2
7394383 Hager et al. Jul 2008 B2
7440818 Handfield et al. Oct 2008 B2
7446747 Youngblood et al. Nov 2008 B2
7454880 Austin et al. Nov 2008 B1
7486188 Van Alstyne Feb 2009 B2
7492257 Tethrake et al. Feb 2009 B2
7492261 Cambre et al. Feb 2009 B2
7504954 Spaeder Mar 2009 B2
7518502 Austin et al. Apr 2009 B2
7518516 Azevedo et al. Apr 2009 B2
7551089 Sawyer Jun 2009 B2
7559483 Hickle et al. Jul 2009 B2
7564364 Zweig Jul 2009 B2
7596427 Frederick et al. Sep 2009 B1
7630791 Nguyen et al. Dec 2009 B2
7639136 Wass et al. Dec 2009 B1
7644016 Nycz et al. Jan 2010 B2
7672872 Shanton Mar 2010 B2
7706915 Mohapatra et al. Apr 2010 B2
7706916 Hilton Apr 2010 B2
7712670 Sauerwein, Jr. et al. May 2010 B2
7715277 De La Huerga May 2010 B2
7729597 Wright et al. Jun 2010 B2
7734157 Wright et al. Jun 2010 B2
7735732 Linton Jun 2010 B2
7747477 Louie et al. Jun 2010 B1
7752085 Monroe Jul 2010 B2
7772964 Tethrake et al. Aug 2010 B2
7775056 Lowenstein Aug 2010 B2
7783163 Wright et al. Aug 2010 B2
7783174 Wright et al. Aug 2010 B2
7801422 Wright et al. Sep 2010 B2
7815117 Tuschel et al. Oct 2010 B2
7834765 Sawyer Nov 2010 B2
7834766 Sawyer Nov 2010 B2
7837093 Leu et al. Nov 2010 B1
7837107 Leu et al. Nov 2010 B1
7858841 Krautkramer et al. Dec 2010 B2
7860730 Goodall et al. Dec 2010 B1
7868754 Salvat, Jr. Jan 2011 B2
7893876 Brown et al. Feb 2011 B2
7908030 Handfield et al. Mar 2011 B2
7918830 Langan et al. Apr 2011 B2
7933033 Ohishi et al. Apr 2011 B2
7976508 Hoag Jul 2011 B2
7985711 Tohmatsu et al. Jul 2011 B2
7990272 Wass et al. Aug 2011 B2
7996286 Kreiner et al. Aug 2011 B2
8002174 Coyne, III et al. Aug 2011 B2
8006903 Braun et al. Aug 2011 B2
8009913 Greyshock Aug 2011 B2
8031347 Edwards et al. Oct 2011 B2
8042738 Cloix Oct 2011 B2
8049627 Addante Nov 2011 B1
8063925 Tainer et al. Nov 2011 B2
8065858 Leu et al. Nov 2011 B2
8072635 Roberts et al. Dec 2011 B2
8077041 Stern et al. Dec 2011 B2
8082192 Nycz et al. Dec 2011 B2
8099339 Pinsonneault et al. Jan 2012 B1
8108068 Boucher et al. Jan 2012 B1
8111159 Andreasson et al. Feb 2012 B2
8112175 Handfield et al. Feb 2012 B2
8131397 Vahlberg et al. Mar 2012 B2
8154390 Heath et al. Apr 2012 B2
8160741 Shoenfeld Apr 2012 B1
8174392 Sagbhini et al. May 2012 B1
8186587 Zmood et al. May 2012 B2
8212677 Ferguson Jul 2012 B2
8219413 Martinez et al. Jul 2012 B2
8224483 Ansari et al. Jul 2012 B1
8231749 Dent et al. Jul 2012 B2
8258961 Phillips et al. Sep 2012 B2
8261939 Knoth Sep 2012 B2
8271128 Schultz Sep 2012 B1
8272492 Chang Sep 2012 B1
8279069 Sawyer Oct 2012 B2
8283287 Aihara et al. Oct 2012 B2
8284059 Ross Oct 2012 B2
8285083 Canessa et al. Oct 2012 B2
8285607 Danilewitz Oct 2012 B2
8286222 Silverbrook et al. Oct 2012 B2
8292173 Yturralde et al. Oct 2012 B2
8292186 Deloche et al. Oct 2012 B2
8296950 Colbrunn et al. Oct 2012 B2
8313024 Marino Nov 2012 B2
8319607 Grimlund et al. Nov 2012 B2
8328082 Bochenko et al. Dec 2012 B1
8339649 Ohishi et al. Dec 2012 B2
8341041 Hull Dec 2012 B2
8346632 Saghbini Jan 2013 B2
8355753 Bochenko et al. Jan 2013 B2
8355962 Delaney et al. Jan 2013 B2
8359338 Butterfield et al. Jan 2013 B2
8371448 Reaux Feb 2013 B1
8376228 DeVet et al. Feb 2013 B2
8384545 Hussain et al. Feb 2013 B2
8385972 Bochenko et al. Feb 2013 B2
8386070 Eliuk et al. Feb 2013 B2
8394053 Bochenko et al. Mar 2013 B2
8403212 van Esch Mar 2013 B2
8403224 Fedorko et al. Mar 2013 B2
8405508 Burke Mar 2013 B2
8438067 Omura et al. May 2013 B2
8461076 Okada et al. Jun 2013 B2
8483550 Wright et al. Jul 2013 B2
8509604 Wright et al. Aug 2013 B2
8515251 Wright et al. Aug 2013 B2
8519849 Ross-Messemer Aug 2013 B2
8530379 Shimizu et al. Sep 2013 B2
8564416 Steven et al. Oct 2013 B2
8565552 Sommer et al. Oct 2013 B2
8582171 Srnka et al. Nov 2013 B2
8593278 Churbock et al. Nov 2013 B2
8593678 Ohishi et al. Nov 2013 B2
D694817 Adam et al. Dec 2013 S
8606596 Bochenko et al. Dec 2013 B1
8636202 Keefe et al. Jan 2014 B2
8639525 Levine et al. Jan 2014 B2
8686859 Hussain et al. Apr 2014 B2
8699054 Edwards et al. Apr 2014 B2
8702674 Bochenko Apr 2014 B2
8723674 Conley et al. May 2014 B2
8749356 Hussain et al. Jun 2014 B2
8755056 Edwards et al. Jun 2014 B2
8825680 Burke et al. Sep 2014 B2
8922435 Fontecchio et al. Dec 2014 B2
8945066 Bochenko et al. Feb 2015 B2
8985388 Ratnaker Mar 2015 B2
8990099 MacDonald et al. Mar 2015 B2
9037479 MacDonald et al. May 2015 B1
9058412 MacDonald et al. Jun 2015 B2
9058413 MacDonald et al. Jun 2015 B2
9171280 Gitchell et al. Oct 2015 B2
9367665 MacDonald et al. Jun 2016 B2
9378484 Russell Jun 2016 B1
9449296 MacDonald et al. Sep 2016 B2
9539374 Halpern Jan 2017 B2
9582644 Gitchell et al. Feb 2017 B2
9734294 MacDonald et al. Aug 2017 B2
9805169 MacDonald et al. Oct 2017 B2
20020026330 Klein Feb 2002 A1
20020049650 Reff Apr 2002 A1
20020087360 Pettit Jul 2002 A1
20020087362 Cobb et al. Jul 2002 A1
20020087554 Seelinger Jul 2002 A1
20030055685 Cobb et al. Mar 2003 A1
20030074223 Hickle et al. Apr 2003 A1
20030102970 Creel et al. Jun 2003 A1
20030160698 Andreasson et al. Aug 2003 A1
20030216974 Browne Nov 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040032330 Hoffman Feb 2004 A1
20040051368 Caputo et al. Mar 2004 A1
20040055221 Hoffman Mar 2004 A1
20040057609 Weinberg Mar 2004 A1
20040081669 Greeven et al. Apr 2004 A1
20040158507 Meek, Jr. et al. Aug 2004 A1
20040178071 Harrison et al. Sep 2004 A1
20040215486 Braverman Oct 2004 A1
20040225528 Brock Nov 2004 A1
20050014849 Pettit et al. Jan 2005 A1
20050014948 Galbo et al. Jan 2005 A1
20050060171 Molnar Mar 2005 A1
20050062603 Fuerst et al. Mar 2005 A1
20050087544 Skavnak Apr 2005 A1
20050108044 Koster May 2005 A1
20050125097 Chudy et al. Jun 2005 A1
20050127176 Dickinson et al. Jun 2005 A1
20050149378 Cyr et al. Jul 2005 A1
20050149414 Schrodt et al. Jul 2005 A1
20050184151 DiMaggio et al. Aug 2005 A1
20050283259 Wolpow Dec 2005 A1
20050285732 Sengupta et al. Dec 2005 A1
20050285746 Sengupta et al. Dec 2005 A1
20060006999 Walczyk et al. Jan 2006 A1
20060043177 Nycz et al. Mar 2006 A1
20060043179 Nycz et al. Mar 2006 A1
20060065726 Andreasson et al. Mar 2006 A1
20060109105 Varner et al. May 2006 A1
20060132311 Kruest et al. Jun 2006 A1
20060145871 Donati et al. Jul 2006 A1
20060152338 Hsu Jul 2006 A1
20060152364 Walton Jul 2006 A1
20060152367 Narayanaswamy Jul 2006 A1
20060208886 Beamer Sep 2006 A1
20060267731 Chen Nov 2006 A1
20070001809 Kodukula et al. Jan 2007 A1
20070008399 Botten et al. Jan 2007 A1
20070023512 Miller et al. Feb 2007 A1
20070023513 Andreasson et al. Feb 2007 A1
20070074722 Giroux et al. Apr 2007 A1
20070114279 Lessing et al. May 2007 A1
20070150382 Danilewitz Jun 2007 A1
20070187475 MacLeod Aug 2007 A1
20070188306 Tethrake et al. Aug 2007 A1
20070200702 Chung Aug 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070213684 Hickle et al. Sep 2007 A1
20070229268 Swan et al. Oct 2007 A1
20070272746 Ortiz et al. Nov 2007 A1
20080004908 Oh et al. Jan 2008 A1
20080012687 Rubinstein Jan 2008 A1
20080045930 Makin et al. Feb 2008 A1
20080046295 Albrecht Feb 2008 A1
20080094214 Azevedo et al. Apr 2008 A1
20080122878 Keefe et al. May 2008 A1
20080128482 Chen et al. Jun 2008 A1
20080129496 Koblasz Jun 2008 A1
20080150722 Jackson Jun 2008 A1
20080157967 Jones et al. Jul 2008 A1
20080172253 Chung et al. Jul 2008 A1
20080184719 Lowenstein Aug 2008 A1
20080191013 Liberatore Aug 2008 A1
20080218307 Schoettle Sep 2008 A1
20080228160 Harrison Sep 2008 A1
20080243088 Evans Oct 2008 A1
20080270178 McRae et al. Oct 2008 A1
20080296373 Zmood et al. Dec 2008 A1
20080297356 Oberle Dec 2008 A1
20080306772 Shahrokh Dec 2008 A1
20080316045 Sriharto et al. Dec 2008 A1
20090002173 Bergsten et al. Jan 2009 A1
20090020442 Dietrich et al. Jan 2009 A1
20090058653 Geissler et al. Mar 2009 A1
20090144087 Kelsch et al. Jun 2009 A1
20090153290 Bierach Jun 2009 A1
20090164042 Handfield et al. Jun 2009 A1
20090194987 Christie et al. Aug 2009 A1
20090224891 Vishik et al. Sep 2009 A1
20090231138 Lai et al. Sep 2009 A1
20090267740 Pizzuto Oct 2009 A1
20090267772 Dehnadi Oct 2009 A1
20090277815 Kohl Nov 2009 A1
20090294521 De La Huerga Dec 2009 A1
20100022953 Bochenko et al. Jan 2010 A1
20100022987 Bochenko et al. Jan 2010 A1
20100036310 Hillman Feb 2010 A1
20100036678 Bray Feb 2010 A1
20100036755 Saghbini Feb 2010 A1
20100042439 Martinez et al. Feb 2010 A1
20100079337 Shiau et al. Apr 2010 A1
20100098425 Kewitsch Apr 2010 A1
20100108761 Nycz et al. May 2010 A1
20100114951 Bauman et al. May 2010 A1
20100176917 Bacarella Jul 2010 A1
20100185458 Newcomb et al. Jul 2010 A1
20100204659 Bochenko et al. Aug 2010 A1
20100217621 Schoenberg et al. Aug 2010 A1
20100219097 Ramasubramanian et al. Sep 2010 A1
20100238039 Tethrake et al. Sep 2010 A1
20100268548 Louie et al. Oct 2010 A1
20100275625 Lowenstein Nov 2010 A1
20100299158 Siegel Nov 2010 A1
20100328474 Hsieh Dec 2010 A1
20100332246 Fedorko et al. Dec 2010 A1
20110006879 Lambrou et al. Jan 2011 A1
20110063091 Kang Mar 2011 A1
20110068922 Ross Mar 2011 A1
20110093279 Levine et al. Apr 2011 A1
20110112682 Matsukawa et al. May 2011 A1
20110115612 Kulinets et al. May 2011 A1
20110125315 Handfield et al. May 2011 A1
20110131056 Chudy et al. Jun 2011 A1
20110139871 Yturralde et al. Jun 2011 A1
20110161112 Keefe et al. Jun 2011 A1
20110163871 Einav et al. Jul 2011 A1
20110166878 Louie et al. Jul 2011 A1
20110184751 Holmes Jul 2011 A1
20110187549 Balasing Aug 2011 A1
20110225100 Sangal et al. Sep 2011 A1
20110227722 Salvat, Jr. Sep 2011 A1
20110240729 Schuck Oct 2011 A1
20110257991 Shukla Oct 2011 A1
20110270441 Handfield et al. Nov 2011 A1
20110291809 Niemiec et al. Dec 2011 A1
20110301446 Kaman Dec 2011 A1
20110313395 Krulevitch et al. Dec 2011 A1
20120037266 Bochenko Feb 2012 A1
20120041778 Kraft Feb 2012 A1
20120044054 Hussain et al. Feb 2012 A1
20120061463 Burke Mar 2012 A1
20120089411 Smka et al. Apr 2012 A1
20120089418 Kamath et al. Apr 2012 A1
20120116798 Heath et al. May 2012 A1
20120125994 Heath et al. May 2012 A1
20120130534 Wurm May 2012 A1
20120173440 Dehlinger et al. Jul 2012 A1
20120177256 Keefe et al. Jul 2012 A1
20120179132 Valk et al. Jul 2012 A1
20120185951 Bauman et al. Jul 2012 A1
20120209619 Knotts et al. Aug 2012 A1
20120240067 Bauman et al. Sep 2012 A1
20120273087 Stavsky et al. Nov 2012 A1
20120278096 Holness Nov 2012 A1
20120278228 Rubinstein Nov 2012 A1
20120323208 Bochenko et al. Dec 2012 A1
20120325330 Prince et al. Dec 2012 A1
20130018356 Prince et al. Jan 2013 A1
20130038452 Sawyer Feb 2013 A1
20130041784 Danilewitz Feb 2013 A1
20130092727 Edwards et al. Apr 2013 A1
20130105568 Jablonski et al. May 2013 A1
20130151005 Gerold et al. Jun 2013 A1
20130191149 Kolberg et al. Jul 2013 A1
20130221082 Botten Aug 2013 A1
20130221087 Keefe et al. Aug 2013 A1
20130225945 Prince et al. Aug 2013 A1
20130327822 Keefe et al. Dec 2013 A1
20140060729 Srnka et al. Mar 2014 A1
20140066880 Prince et al. Mar 2014 A1
20140117081 Jablonski et al. May 2014 A1
20140136229 Levine et al. May 2014 A1
20140138440 D'Ambrosio et al. May 2014 A1
20140142975 Keefe et al. May 2014 A1
20140184390 Elizondo, II Jul 2014 A1
20140184391 Elizondo, II Jul 2014 A1
20140197954 Caputo et al. Jul 2014 A1
20140210596 Hussain et al. Jul 2014 A1
20140262919 Hussain et al. Sep 2014 A1
20140263614 Keefe et al. Sep 2014 A1
20140276213 Bochenko Sep 2014 A1
20140279548 Wang Sep 2014 A1
20140282197 Keefe et al. Sep 2014 A1
20140291397 Caputo et al. Oct 2014 A1
20140316561 Tkachenko Oct 2014 A1
20140367080 Hussain et al. Dec 2014 A1
20140372145 MacDonald et al. Dec 2014 A1
20150058182 Kress-Spatz et al. Feb 2015 A1
20150115029 Rahim et al. Apr 2015 A1
20150235005 MacDonald et al. Aug 2015 A1
20150339622 MacDonald et al. Nov 2015 A1
20160019367 Olson et al. Jan 2016 A1
20160132649 Gitchell et al. May 2016 A1
20170061095 Waskins et al. Mar 2017 A1
20170132734 MacDonald et al. May 2017 A1
20170212993 Gitchell et al. Jul 2017 A1
20180279781 Jeffries et al. Oct 2018 A1
Foreign Referenced Citations (17)
Number Date Country
2722328 Oct 2009 CA
2722328 Oct 2009 CA
2790220 Jun 2013 CA
102791310 Dec 2014 CN
201204914 Oct 2013 IN
02095675 Nov 2002 WO
2006135830 Feb 2006 WO
2006026246 Mar 2006 WO
2010074781 Jul 2010 WO
2011115676 Sep 2011 WO
2011150013 Dec 2011 WO
2013082423 Jun 2013 WO
2013116873 Aug 2013 WO
2013134256 Sep 2013 WO
2014092754 Jun 2014 WO
2014159928 Oct 2014 WO
2014189834 Nov 2014 WO
Non-Patent Literature Citations (114)
Entry
Barlas, Stephen, “Pharmacy Product Tracing Likely to Go National—Costs to Pharmacies Worrisome”, Pharmacy & Therapeutics, Jan. 2009, vol. 34 No. 1, p. 14.
Belson, D., “Storage, Distribution, and Dispensing of Medical Supplies”, Create Interim Report Under FEMA Grant EMW-2004-GR-0112, Apr. 21, 2005, pp. 1-36.
Cakici et al., “Using RFID for the management of pharmaceutical inventory-system optimization and shrinkage control”, Decision Support Systems, 2011, pp. 842-852.
CPG Sec. 400.210, Radiofrequency Identification Feasibility Studies and Pilot Programs for Drugs, Nov. 2004, Compliance Policy Guide, available at: http://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074357.htm.
Crash Cart Inventory Checklist, Outpatient Surgery Magazine, Oct. 2004, “Outpatient Surgery”, available at: http://www.outpatientsurgery.net/resources/forms/2004/pdf/OutpatientSurgeryMagazine 0410 crashCart.pdf, in 1 page.
Curtin et al., “Making the ‘Most’ out of RFID: a research agenda for the study of the adoption, usage and impact of RFID”, Information Technology Management, Apr. 2007, pp. 87-110.
Gonzalez, Stephanie, “Health Maintenance System (HMS) Hardware Research, Design, and Collaboration”, NASA USRP—Internship Final Report, 2010, pp. 1-20.
Harrop et al., “RFID for Healthcare and Pharmaceuticals, 2008-2018”, Securing Pharma, May 2008, pp. 1-12.
Houliston, Bryan, “Integrating RFID Technology into a Drug Administration System”, Bulletin of Applied Computing and Information Technology, vol. 3, No. 1, May 2005, pp. 8. Retrieved Sep. 26, 2013 from http://citrenz.ac.nz/bacit/0301/2005Houliston RFID.htm.
Jorgensen et al., “Executable Use Cases: Requirements for a Pervasive Health Care System”, IEEE Software, Mar./Apr. 2004, pp. 34-41.
Lai et al., “Enhancing Medication Safety and Reduce Adverse Drug Events on Inpatient Medication Administration using RFID”, WSEAS Transactions on Communications, Oct. 2008, vol. 7, No. 10, pp. 1045-1054.
Lampe et al., “The Smart Box Application Model”, Advances in Pervasive Computing, 2004, pp. 1-6.
“McKesson's Announces New Touch-Screen Driven Medication Dispensing Solution”, Business Wire, Jun. 15, 2009, pp. 2, Available at: http://www.businesswire.com/news/home/20090615005349/en/McKesson-Announces-Touch-Screen-Driven-Medication-Dispensing-Solution#.VR7quPnF 10.
“Medical Packaging Inc. Announces Clear Stem Flag Label System for Ampoules, Vials, and Syringes”, Feb. 1, 2006 available at: http://www.medpak.com/v1/news/20060201 CSFLAG.pdf, in 1 page.
O'Driscoll et al., “RFID: An Ideal Technology for Ubiquitous Computing?” Dublin Institute of Technology School of Electronics and Communications Conference Papers, Jan. 1, 2008, pp. 1-17.
Pappu, Ph.D et al., “RFID in Hospitals: Issues and Solutions” Consortium for the Accelerated Deployment of RFID in Distribution, Sep. 2004, pp. 1-12.
Tzeng et al., “Evaluating the Business Value of RFID: Evidence from Five Case Studies”, International Journal of Production Economics, 2008, vol. 112, pp. 601-613.
Wang et al., “Applying RFID Technology to Develop a Distant Medical Care Service Platform”, International Journal of Electronic Business Management, 2010, vol. 8, No. 2, pp. 161-170.
O'Connor, “Johnson & Johnson Finds Value in Multiple RFID Apps” (Apr. 23, 2008), retrieved Aug. 21, 2017, 2 pages, available at http://www.rfidjounal.com/articles/pdf?4046.
Collins, “RFID Cabinet Manages Medicine” (Aug. 12, 2004), retrieved Aug. 21, 2017, 1 page, available at http://www.rfidjournal.com/articles/pdf?1081.
O'Connor, Mary Catherine, “To Keep Drugs from Expiring, Hospital Tests Intelliguard System”, RFID Journal, Jan. 12, 2011, pp. 3. http://www.rfidjournal.com/articles/view?8123.
Liu et al, “Point-of-Care Support for Error Free Medication Process” (Jun. 25, 2007), retrieved Aug. 21, 2017, 12 pages, available at: http://ieeexplore.ieee.org/document/4438162/.
McCall et al., “RMAIS: RFID-based Medication Adherence Intelligence System” (Aug. 31, 2010), retrieved Aug. 21, 2017, 4 pages, available at http://ieeexplore.ieee.org/document/5627529/.
Tsai et al., “iMAT: Intelligent Medication Administration Tools” (Jul. 1, 2010), retrieved Aug. 21, 2017, 8 pages, available at http://ieeexplore.ieee.org/document/5556551/.
Tsai et al., “Smart Medication Dispenser: Design, Architecture, and Implementation” (Sep. 27, 2010), retrieved Aug. 21, 2017, 12 pages, available at http://ieeexplore.ieee.org/document/5585838/.
Becker et al. SmartDrawer: RFID-Based Smart Medicine Drawer for Assistive Environments,pp. 1-8, PETRA '09, Jun. 9-13, 2009, Corfu, Greece.
Mike Mowry, A Survey of RFID in the Medical Industry With Emphasis on Applications to Surgery and Surgical Devices, MAE188 Introduction to RFID Dr. Rajit Gadh UCLA, Jun. 9, 2008, pp. 1-22, USA.
JD Howard, Implementation of RFID in the Pharmaceutical Industry, Advisor: Dr. Jay Singh, Feb. 2009, pp. 1-11, San Luis Obispo, CA, USA.
Yahia Zare Mehrjerfi, RFID-enabled healthcare systems: risk-benefit analysis, Department of Industrial Engineering, Yazd University, vol. 4 No. 3, 2010, pp. 282-300, Yazd, Iran.
Cakici et al, Using RFID for the management of pharmaceutical inventory—system optimization and shrinkage control, www.elsevier.com, Feb. 5, 2011, pp. 1-11, Rochester, NY, USA.
John Edwards, RFID Smart Shelves and Cabinets, www.rfidjournal.com, Aug. 24, 2009, pp. 1-4, USA.
Bendavid et al., Using RFID to Improve Hospital Supply Chain Management for High Value and Consignment Items, ScieneDirect, Procedia Computer Science 5 (2011) 849-856, Canada.
Wickipedia, Faraday cage, http://wikipedi.org/w/index.php?title=Faraday, Apr. 23, 2018, pp. 1-3.
Floerkemeier et al., The Smart Box Concept for Ubiquitous Computing Environments, Institute for Pervasive Computing Department of Computer Science, pp. 1-4, ETH Zurich, Switzerland.
School of Electrical and Electronic Engineering, Dublin Institute of Technology, RFID: an Ideal Technology for Ubiquitous Computing?, http://arrow.dit.ie/engschcecon, Jan. 1, 2008, pp. 1-17.
Loc Ho et al. A Prototype on RFID and Sensor Networks for Elder Healthcare: Progress Report, Loc Ho, et al., SIGCOMM '05 Workshops, pp. 70-75, Aug. 22-26, 2005, Philadelphia, PA, USA.
C. Saygin, Adaptive Inventory Management Using RFID Data, C. Saygin, Adv Manuf Technol (2007) 32: 1045-1051.
Yannick Meiller et al. Adaptive Knowledge-Based System for Health Care Applications with RFID-Generated Information, Elsevier, Decision Support Systems, Received May 29, 2010.
AmerisourceBergen Specialty Group Reconfigures Cubixx Medical Cabinet, Pharmaceutical Commerce, Jan. 9, 2011, Posted in Supply Chain/Logistics, Tagged Nov./Dec. 2010.
Malabika Parida et al., Application of RFID Technology for In-House Drug Management System, IEEE, 2012 15th International Conference on Network-Based Information Systems.
Beth Bacheldor, Healthcare Deploys RFID Refrigerated Drug Cabinets, Sep. 24, 2007, RFID Journal.
Beth Bacheldor, Cardinal Health Readies Item-Level Pilot, May 31, 2006, RFID Journal.
Crash Cart Inventory Checklist (Sample), Courtesy of Progressive Surgical Solutions, LLC, Outpatient Surgery Magazine, Oct. 2004.
Data Gathering Developments, Manufacturing Chemist, p. 24, Feb. 2005.
Chia-Chen Chao et al., Determining Technology Trends and Forecasts of RFID by a Historical Review and Bibliometric Analysis from 1991 to 2005, et al., Elsevier, ScienceDirect, 2006.
Doing the Wave: Inventory Management with RFID, Kathryn Green, Sr. Director Radiology Services and Cardiovascular Diagnostic & Interventional Services, UMass Memorial Medical Center, Worchester, Massachusetts, vol. 15—Issue 9—Sep. 2007.
Mary Cahtherine O'Connor, Drug Distributor Uses RFID to Vend Meds, May 23, 2006, RFID Journal.
Chun-Liang Lai et al.m Enhancing Medication Safety and Reduce Adverse Drug Events on Inpatient Medication Administration Using RFID, WSEAS.
Chih-Peng Lin et al., Fair Sharing Using Real-time Polling Service to Adaptive VBR Stream Transmission in a 802.16 Wireless Networks, Transactions on Communications, ISSN: 1109-2742, Issue 10, vol. 7, Oct. 2008.
Mary Catherine O'Connor, GlaxoSmithKline Tests RFID on HIV Drug, Mar. 24, 2006, RFID Journal.
Carol Humble, RN, How RFID Freed Nurses from the Pain of Inventory Duties, Memorial Health Care System, Chattanooga, TN, vol. 17—Issue 12—Dec. 2009.
Intel & Siemens Launch RFID Blood Bank in Malaysia, Aug. 16, 2007, RFID Journal.
Mary Catherine O'Connor, Interrogators Start to Evolve, Jun. 1, 2006, RFID Journal.
Ergin Erdem et al., Investigation of RFID Tag Readability for Pharmaceutical Products at Item Level, Drug Development and Industrial Pharmacy, 2009; 35(11): 1312-1324.
Andrea Cangialosi et al., Leveraging RFID in Hospitals: Patient Life Cycle and Mobility Perspectives, IEEE Applications & Practice, Sep. 2007.
Jones et al., Marketing Intelligence & Planning: The benefits, challenges and impacts of radio frequency identification technology (RFID) for retailers in the UK., Marketing Intelligence & Planning, vol. 23 Issue: 4, pp. 395-402, Mar. 2005.
Mary Catherine O'Connor, McKesson Starts RFID Pilot for Viagra, Feb. 17, 2005, RFID Journal.
Jerry Fahrni, More RFID Refrigerator Stuff—Cubixx and myCubixx, Sep. 3, 2012.
New RFID Medical Cabinets Deployed at 50 Hospitals, Sep. 17, 2007, RFID Journal.
Mary Catherine O'Connor, Pfizer Using RFID to Fight Fake Viagra, Jan. 6, 2006, RFID Journal.
Elizabeth Wasserman, Purdue Pharma to Run Pedigree Pilot, May 31, 2005, RFID Journal.
Ygal Bendavid et al., Redesigning the Replenishment Process of Medical Supplies in Hospitals with RFID, Business Process Management Journal, (2010), vol. 16, Issue: 6, pp. 991-1013.
Shang-Wei Wang et al., RFID Applications in Hospitals: a Case Study on a Demonstration RFID Project in a Taiwan Hospital, Proceedings of the 39th Hawaii International Conference on System Sciences, 2006.
Mark Roberti, RFID Basics for Health Care: Understanding the Fundamental Concepts That Affect RFID Deployments, RFID Journal presentation, Sep. 17, 2009, The Westin Waltham-Boston, Waltham, MA.
Mark O. Lewis et al., RFID—Enabled Capabilities and Their Impact on Healthcare Process Performance, Jan. 1, 2010, Association for Information Systems AIS Electronic Library (AISeL), ICIS 2010 Proceedings, International Conference in Information Systems.
RFID Medical Cabinets Evaluated in New Benchmark, Sep. 12, 2007, RFID Journal.
Antti Lahtela et al., RFID and NFC in Healthcare: Safety of Hospitals Medication Care, University of Kuopio, Kuopio, Finland, 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, 241-244, IEEE.
Beth Bacheldor, Children's Hospital Boston Joins Others Using RFID to Track Implantables, Mar. 5, 2018, pp. 1-3, RFID Journal.
Amitava Dutta et al., RFID and Operations Management: Technology, Value, and Incentives, Production and Operations Management, vol. 16, No. 5, Sep.-Oct. 2007, pp. 646-655.
Ari Juels, RFID Security and Privacy: A Research Survey, IEEE Journal on Selected Areas in Communications, vol. 24, No. 2, pp. 381-394, Feb. 2006.
Christian Floerkemeier et al., The Smart Box Concept for Ubiquitous Computing Environments, Institute for Pervasive Computing, Department of Computer Science, ETH Zurich, Switzerland, Jan. 2004.
Clair Swedberg, Tennessee Hospital Tracks High-Value Items, Aug. 5, 2009, RFID Journal.
Mary Catherine O'Connor, To Keep Drugs from Expiring, Hospital Tests Intelliguard System, Jan. 12, 2011, RFID Journal.
Beth Bacheldor, UCSD Medical Center Expands Its RFID Deployment, Oct. 29, 2008, RFID Journal.
Beth Bacheldor, UMass Med Center Finds Big Savings Through Tagging, Nov. 21, 2007, RFID Journal.
Kinsella, B., Kit Check Announces New RFID Scanning Station, Little Blue Box is Smaller, Lighter, Provided Free for Users, Jun. 2, 2014, 2 pages, Kit Check, webpage includes video link at https://kitcheck.com/2014/06/new-kit-check-smaller-rfid-scanning-station-little-blue-box/.
Inderbir Singh et al., Versatility of Radio Frequency Identification (RFID) Tags in the Pharmaceutical Industry, Instrumentation Science and Technology, 36: 656-663, 2008.
The Orange Book, Approved Drug Products with Therapeutic Equivalence Evaluations, 2018.
Kit Check, Kit Check Installs in One Hour, video link at https://kitcheck.com/learn-more/video/kit-check-installs-in-one-hour/, publication date unknown, accessed Jul. 8, 2019.
Kit Check, Overview, video link at https://www.youtube.com/watch?v=UvNnoZYgGW4, published Oct. 13, 2013.
Kit Check, Wick Video, video link at https://www.youtube.com/watch?v=tDpVoM4iMbl, published Oct. 14, 2013.
Brown, Dennis E., RFID Implementation, McGraw-Hill Communications, 2007, 34 pages (excerpts), The McGraw-Hill Companies.
Glover, Bill et al., RFID Essentials, First Edition, Jan. 2006, 37 pages (excerpts), O'Reilly Media, Inc., Sebastopol, CA.
Bacheldor, Beth, Children's Hospital Boston Joins Others Using RFID to Track Implantables, RFID Journal, Mar. 5, 2008, 3 pages.
U.S. Department of Health and Human Services, Food and Drug Administration, Approved Drug Products with Therapeutic Equivalence Evaluations (“The Orange Book”), 28th edition, 2008, first published in 1980, 1103 pages.
Reexamination Control No. 90014344, Request for Ex Parte Reexamination of U.S. Pat. No. 8,990,099 B2 with Appendices A-D, filed with the USPTO on Jul. 25, 2019, 1387 pages.
Reexamination Control No. 90014345, Request for Ex Parte Reexamination of U.S. Pat. No. 9,058,412 B2 with Appendices A-D, filed with the USPTO on Jul. 26, 2019, 1429 pages.
Reexamination Control No. 90014343, Request for Ex Parte Reexamination of U.S. Pat. No. 9,058,413 B2 with Appendices A-D, filed with the USPTO on Jul. 25, 2019, 1463 pages.
Reexamination Control No. 90014346, Request for Ex Parte Reexamination of U.S. Pat. No. 9,367,665 B2 with Appendices A-D, filed with the USPTO on Jul. 26, 2019, 1477 pages.
Reexamination Control No. 90014347, Request for Ex Parte Reexamination of U.S. Pat. No. 9,805,169 B2 with Appendices A-D, filed with the USPTO on Jul. 29, 2019, 1535 pages.
Case IPR2019-00376, Petition for Inter Partes Review of U.S. Pat. No. 8,990,099 with Exhibits 1001-1011 filed with the USPTO Patent Trial and Appeal Board on Nov. 30, 2018 by Health Care Logistics, Inc., Patent Owner's Preliminary Response filed with the USPTO Patent Trial and Appeal Board on Mar. 8, 2019 by Kit Check, Inc., and Decision Denying Institution of Inter Partes Review entered by the USPTO Patent Trial and Appeal Board on Jun. 4, 2019, 863 pages.
Case IPR2019-00385, Petition for Inter Partes Review of U.S. Pat. No. 9,058,412 with Exhibits 1001-1014 filed with the USPTO Patent Trial and Appeal Board on Nov. 30, 2018 by Health Care Logistics, Inc., Patent Owner's Preliminary Response filed with the USPTO Patent Trial and Appeal Board on Mar. 8, 2019 by Kit Check, Inc., and Decision Denying Institution of Inter Partes Review entered by the USPTO Patent Trial and Appeal Board on Jun. 3, 2019, 2013 pages.
Case IPR2019-00387, Petition for Inter Partes Review of U.S. Pat. No. 9,058,413 with Exhibits 1001-1014 filed with the USPTO Patent Trial and Appeal Board on Dec. 1, 2018 by Health Care Logistics, Inc., Patent Owner's Preliminary Response filed with the USPTO Patent Trial and Appeal Board on Mar. 13, 2019 by Kit Check, Inc., and Decision Denying Institution of Inter Partes Review entered by the USPTO Patent Trial and Appeal Board on Jun. 7, 2019, 2014 pages.
Case IPR2019-00394, Petition for Inter Partes Review of U.S. Pat. No. 9,367,665 with Exhibits 1001-1014 filed with the USPTO Patent Trial and Appeal Board on Dec. 3, 2018 by Health Care Logistics, Inc., Patent Owner's Preliminary Response filed with the USPTO Patent Trial and Appeal Board on Mar. 13, 2019 by Kit Check, Inc., and Decision Denying Institution of Inter Partes Review entered by the USPTO Patent Trial and Appeal Board on Jun. 11, 2019, 638 pages.
Case IPR2019-00388, Petition for Inter Partes Review of U.S. Pat. No. 9,805,169 with Exhibits 1001-1010 filed with the USPTO Patent Trial and Appeal Board on Dec. 1, 2018 by Health Care Logistics, Inc., Patent Owner's Preliminary Response filed with the USPTO Patent Trial and Appeal Board on Mar. 13, 2019 by Kit Check, Inc., and Decision Denying Institution of Inter Partes Review entered by the USPTO Patent Trial and Appeal Board on Jun. 3, 2019, 625 pages.
Complaint, Kit Check, Inc., Plaintiff, v. Health Care Logistics, Inc., Defendant, Case No. 2:17-cv-1041, United States District Court for the Southern District of Ohio Eastern Division, Dec. 1, 2017, 45 pages.
Defendant's First Amended Answer, Affirmative Defenses, and Counterclaims to Plaintiffs Complaint, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV, United States District Court for the Southern District of Ohio Eastern Division, Feb. 9, 2018, 117 pages.
Defendant Health Care Logistics, Inc.'s Motion for Judgment on the Pleadings Pursuant to FED. R. CIV. P. 12(C), Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV, United States District Court for the Southern District of Ohio Eastern Division, May 25, 2018, 43 pages.
Plaintiff Kit Check, Inc.'s Memorandum in Opposition to Defendant Health Care Logistics, Inc.'s Motion for Judgment on the Pleadings, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Jun. 29, 2018, 91 pages.
Defendant Health Care Logistics, Inc.'s Reply in Support of Motion for Judgment on the Pleadings Pursuant to FED. R. CIV. P. 12(C), Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV, United States District Court for the Southern District of Ohio Eastern Division, Jul. 20, 2018, 76 pages.
Joint Claim Construction and Prehearing Statement, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Sep. 20, 2018, 21 pages.
Plaintiff Kit Check, Inc.'s Opening Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Nov. 16, 2018, 93 pages.
Defendant Health Care Logistics, Inc.'s Opening Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Nov. 16, 2018, 307 pages.
Deposition of Jeffrey Fischer, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Dec. 19, 2018, 86 pages.
Plaintiff Kit Check, Inc.'s Responsive Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Jan. 3, 2019, 88 pages.
Defendant Health Care Logistics, Inc.'s Response to Plaintiff Kit Check, Inc.'s Opening Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV, United States District Court for the Southern District of Ohio Eastern Division, Jan. 3, 2019, 32 pages.
Defendant Health Care Logistics, Inc.'s Motion for Stay, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV, United States District Court for the Southern District of Ohio Eastern Division, Jan. 21, 2019, 12 pages.
Opinion & Order, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Mar. 14, 2019, 17 pages.
Joint Stipulation of Partial Dismissal Without Prejudice, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Apr. 16, 2019, 2 pages.
Joint Notice Regarding Claim Terms Which No Longer Need to be Construed at Markman, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Apr. 16, 2019, 2 pages.
Opinion & Order, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Apr. 29, 2019, 4 pages.
Notice to the Court Regarding PTAB's Decision to Deny Institution on All of Defendant's IPR Petitions, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041, United States District Court for the Southern District of Ohio Eastern Division, Jun. 12, 2019, 120 pages.
Notice of Status of Defendant Health Care Logistics Inc.'s Requests for Inter Partes Review, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV, United States District Court for the Southern District of Ohio Eastern Division, Jun. 20, 2019, 3 pages.
Roberti, Mark, RFID Basics for Health Care, Understanding the fundamental concepts that affect RFID deployments, RFID Journal presentation, Sep. 17, 2009, 33 pages, The Westin Waltham-Boston, Waltham, MA.
Related Publications (1)
Number Date Country
20190272396 A1 Sep 2019 US
Provisional Applications (2)
Number Date Country
62403319 Oct 2016 US
62465329 Mar 2017 US