The present invention relates to a radio-frequency identification (RFID) system, and more particularly to an RFID system having an RFID tag provided with a plurality of antennas and accordingly, being capable of detecting an orientation of the RFID tag. The present invention also relates to an RFID tag enabling an RFID system to detect its orientation, and a puzzle system using the RFID system capable of detecting an RFID tag orientation.
A radio-frequency identification (RFID) tag has the advantages of not requiring an internally built power source, and being lightweight, compact, and wirelessly inducible. With these advantages, the RFID tag has been widely applied to many different fields, comprising warehouse management, logistics, induction-type control, etc. However, a conventional reader can only detect the existence of the RFID tag. That is, when the RFID tag receives an RF signal transmitted from the reader, the RFID tag can correspondingly generate an amount of electric power and wirelessly sends out an identification data thereof. When receiving the identification data, the reader is able to know there is an RFID tag nearby the reader. From the received identification data, the reader is also able to retrieve data about the object having the RFID tag attached thereto. However, none of the currently available RFID tags allows the reader to detect an orientation of the RFID tag. Therefore, the application of the RFID tags is still largely limited.
It is therefore a primary object of the present invention to provide an RFID system and an RFID tag thereof, so as to widen the application of the RFID tag.
To achieve the above and other objects, the RFID tag according to an embodiment of the present invention comprises a plurality of antennas, a plurality of power receiving modules, and a wireless communication module. The plurality of antennas independently receives an RF signal each, and the plurality of power receiving modules are correspondingly connected to the plurality of antennas. One of the power receiving modules will output an electric power according to an RF signal received by an antenna corresponding thereto. The wireless communication module is electrically connected to the plurality of power receiving modules. After receiving the electric power generated by the power receiving module, the wireless communication module determines an identification data that is corresponding to the antenna receiving the RF signal, and sends out the identification data via at least one of the plurality of antennas.
An RFID tag according to another embodiment of the present invention comprises a memory, a plurality of antennas, a plurality of power receiving modules, a logic circuit, a control circuit, and a modulation circuit. The memory stores a first identification data. The plurality of antenna independently receives an RF signal each. The plurality of power receiving modules are correspondingly connected to the plurality of antennas. According to an RF signal received by an antenna corresponding thereto, one of the power receiving modules outputs an electric power for operation of the RFID. The logic circuit is electrically connected to the plurality of power receiving modules to generate a position data corresponding to the antenna receiving the RF signal. The control circuit combines the first identification data with the position data to generate a second identification data. The modulation circuit modulates the second identification data to generate a modulation signal, which is then sent out via at least one of the antennas.
To achieve the above and other objects, the RFID system capable of detecting RFID tag orientation according to a preferred embodiment of the present invention comprises at least one RFID tag, such as any one of that having been described above, a reader, and a processor. The RFID tag receives an RF signal transmitted from the reader and wirelessly outputs an identification data, which is received by the reader. Based on the identification data received by the reader, the processor can determine an orientation of the RFID tag.
A puzzle system can be designed by employing the RFID system and the RFID tag of the present invention. Puzzle system according to a preferred embodiment of the present invention, comprises a platform, a plurality of puzzle pieces, a reader, and processor. Each of the puzzle pieces is provided with at least one of the above-described RFID tags for receiving an RF signal transmitted from the reader and wirelessly outputting an identification data, which is received by the reader. Based on the identification data, the processor determines an orientation of the RFID tag. Then, based on the orientation of the RFID tag, the processor further determines whether the puzzle pieces are correctly positioned on the platform.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Exemplary embodiments of the present invention are described herein in the context of an RFID system and an RFID tag thereof, and a puzzle system using the same.
Those of ordinary skilled in the art will realize that the following detailed description of the exemplary embodiment(s) is illustrative only and is not intended to be in any way limiting. Other embodiments will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the exemplary embodiment(s) as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.
The wireless communication module 13 is electrically connected to the power receiving modules 121˜124. When receiving power from one of the power receiving modules 121˜124, the wireless communication module 13 determines an identification data that is corresponding to the antenna receiving the RF signal, and sends out the identification data via the antenna receiving the RF signal. For instance, when the antenna 111 receives an RF signal, the power receiving module 121 generates electric power 14 and supplies the same to the wireless communication module 13. Then, the wireless communication module 13 outputs an identification data 151 that is corresponding to the antenna 111, and the identification data 151 is wirelessly sent out via the antenna 111. Similarly, when the antenna 112, 113 or 114 receives an RF signal, the corresponding power receiving module 122, 123 or 124 will generate electric power 14, so that the wireless communication module 13 outputs the identification data 152, 153 or 154 corresponding to the antenna 112, 113 or 114.
The antennas are preferably arranged to be orthogonal to one another or be spaced from one another by a predetermined distance, so that only one of the antennas can receive the RF signal at the same time point. In this manner, it is able to determine which antenna has received the RF signal by recognizing the identification data sent out by the RFID tag 1. If the antennas are arranged at different positions on a planar object or on different faces of a three-dimensional (3D) object, it is possible to further determine how the planar object or the 3D object is positioned.
In
The logic circuit 24 comprises a plurality of clock buffers 241˜244, and a plurality of flip-flops 245˜248. The clock buffers 241˜244 each are correspondingly connected to an end of the antennas 211˜244 to generate a clock 249 according to a voltage signal at the end of the corresponding antenna, and the generated clock 249 is used by the memory 23, the control circuit 25, and the modulation circuit 26 for them to operate. The flip-flops 245˜248 are correspondingly connected to the clock buffers 241˜244 respectively, and the outputs of the flip-flops 245˜248 are electrically connected to the control circuit 25.
Inputs of the flip-flops 245˜248 are electrically connected to the power supply VDD. When one of the power receiving modules 221˜224 generates a voltage VDD that is sufficient for the RFID tag 2 to operate, the flip-flops 245˜248 are reset, so that the outputs of the flip-flops 245˜248 are set to logic zero (0). Since the flip-flops 245˜248 are correspondingly connected to the clock buffers 241˜244, the flip-flops 245˜248 can be triggered by the output signals of the clock buffers 241˜244, so that the voltage VDD at the inputs of the flip-flops 245˜248 is allowed to be transmitted to the outputs of the flip-flops 245˜248. Therefore, for other antennas that do not receive an RF signal, the clock buffers corresponding thereto will not generate any clock or any trigger signal, and outputs of the flip-flops corresponding thereto will maintain at the reset state, that is, logic 0. On the other hand, for the antenna that has received an RF signal, the clock buffer corresponding thereto will generate a clock 249, the flip-flop corresponding thereto will be triggered, and the output of the corresponding flip-flop is changed to logic 1 (VDD). Thus, based on the output values of the flip-flops 245˜248, the control circuit 25 can determine a position data 251 corresponding to the antenna receiving the RF signal. For instance, when the antenna 211, 212, 213 or 214 receives an RF signal, the position data 251 will be “0001”, “0010”, “0100” or “1000”. Depending on actual need, the control circuit 25 can further comprise a register to store the position data 251.
When the memory 23 and the control circuit 25 receive the power supply VDD, the control circuit 25 can determine the position data 251 and read the first identification data 231 from the memory 23, and then combines the first identification data 231 with the position data 251 to generate a second identification data 252. For example, when the first identification data 231 is “1101111” and the position data 251 is “0010”, the second identification data 252 shall be “00101101111”.
The modulation circuit 26 is electrically connected to the control circuit 25 and to an end of each of the antennas 211˜214. The modulation circuit 26 modulates the second identification data 252 to generate a modulation signal, which is then wirelessly sent out via the antennas 211˜214. Preferably, the modulation signal is sent out via the antenna corresponding to the position data 251.
Besides, when the memory 23, the control circuit 25, the modulation circuit 26, and the flip-flops 245˜248 each require different operating voltages, the RFID tag 2 can further comprise a power management circuit, such as a charge pump circuit, to raise the voltage value of the electric power output by the power receiving modules 221˜224. Preferably, the power receiving modules each comprise an RF-to-DC circuit, and, depending on actual need, can further comprise a DC limiting circuit. And, the DC limiting circuit preferably comprises a voltage stabilizer and an RF protection circuit.
The RF-to-DC rectifiers 321˜324 are electrically connected to the antennas 311˜314, respectively. Based on an RF signal received by the antenna, the RF-to-DC rectifier corresponding to that antenna generates electric power VDD, which is supplied to other components of the RFID tag 3 for operation. The voltage stabilizer 391 can further stabilize the electric power VDD. The buffers 341˜344 are electrically connected to an end of the antennas 311˜314, respectively, and outputs of the buffers 341˜344 are electrically connected to the control circuit 35.
Based on the output signal from the buffers 341˜344, the control circuit 35 can determine which one of the antennas has received an RF signal and then reads an identification data that is corresponding to that antenna from the memory 33. The read identification data is then output to the modulation circuit 36. For instance, when the antenna 311 receives an RF signal, the control circuit 35 reads the identification data 331; or, when the antenna 312 receives an RF signal, the control circuit 35 will read the identification data 332. Thereafter, the modulation circuit 36 modulates the identification data to generate a modulation signal, which is wirelessly sent out via the antennas 311˜314. Preferably, the modulation signal is sent out via the antenna that is corresponding to the identification data.
As can be seen from
The present invention has been described with some preferred embodiments thereof and it is understood that many changes and modifications in the described embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
This patent application is based on Provisional Patent Application Ser. No. 60/960,872 filed 18 Oct. 2007, currently pending.
Number | Date | Country | |
---|---|---|---|
60960872 | Oct 2007 | US |