The present disclosure relates to timing systems and more specifically, to a timing system for timing aquatic events.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
There are numerous events held with participants in water many of which are timed events. These include swimming races, surfboarding, and powered equipment events. Often the participants in these events are positioned in the water and are required to traverse a course or path in the water, or travel between two or more points or demarcation lines that are partially or wholly in the water. When timing many sporting events, such a running and biking events, it has become very common to use passive RFID tags for identifying the participant and the proximity of the participant to a monitored demarcation line or milestone such as a starting line, split point, turning point or finish line, by way of example. In such systems, the RFID tags are placed on a participant, on their clothing or a bib, or on the participant's vehicle for uniquely identifying the participant and for identifying the passing of the participant at the monitored point. For land based events, the RFID tag readers can easily be placed on a surface along the road or path for such sporting events even where there are numerous participants making a passing such as during a marathon race. For example, at a start of a marathon race, nearly all of the participants pass the starting line within a very short period of time. In such situations, one or more RFID tag readers with one or more RF antennas are placed at that starting line or are multiple points relative to the starting line to ensure that all participants' tags are read and the timing system logs their passing and the time of their individual passing.
However, for aquatic events, RFID tags and RFID tag readers have not been used with success. This is due to the RF absorption qualities of water, the position of the passive RFID tag on the participant or participant vehicle that may be at or near or under the surface of the water, or which may be immersed or covered with water at the time of the passing of the participant at a timed point at which the RFID tag reader is attempting to read the RFID tag of the participant. Additionally, the timing point readers would often be required to be placed in the water at the water located timing point. Due to these factors, the use of RFID tags and RFID tag readers for timed event systems has been extremely limited and often not used. Further, where attempted, it has been found to be very difficult to nearly impossible to stabilize the RF tag readers and their antennas in the water so as to consistently perform RF tag reads to the water located RFID tags that are approaching and passing the timing point. This is particularly true where there have been numerous to large number of RFID tags to be read that often requires sufficient advancing distances so as to not interfere with the participants and that provide for the desired accuracy of tag reads such that nearly all if not all participant tags are read and there are no missed tags. Further, the surface positioning of the RFID tag readers and in particular their RFID antenna are often moving due to changes in the surface and water flow conditions of the water, such as waves that may be due to displacement of the water by the participants or other sources including the wind and the tide.
The inventor hereof has identified these problems and limitations but also the desirability of using RFID tags and RFID tag readers and timing systems for aquatic events and invented a novel and nonobvious improvement to RFID tag readers and timing systems for effective use in aquatic located timing points for timed events. As developed by the inventor hereof, a new aquatic RFID tag reading system and method provides for significant improvements in the performance of water located RFID tag readings for timed events having one or more or all of the monitored timing points being located in the body of water, aquatic timing points. The presently disclosed system provides for consistent and accurate reading of passing RFID tags of participants or their vehicles. This includes, and is not limited to, systems and methods for determining the passing of a participant of an aquatic event by a water-based or aquatic timing point including an RFID tag associated with the participant, an aquatic based RFID tag reader system having one or more aquatic positioned RFID antenna assemblies placed in one or more aquatic positions.
Each aquatic RFID antenna mounting assembly can have one or more RFID antenna mounted thereon at a position above the surface of the water and positioned to define one or more RF based timing lanes as virtual lanes within the body of water. Each aquatic RFID antenna mounting assembly and the antennas mounted thereon is coupled to one or more aquatic RFID tag readers located either on a RFID tag reader mounting platform, or on land. The aquatic RFID antenna mounting assembly has a portion that can be a substantial portion that is below the surface of the water and can include at least one floatation device and at least one stabilization device for anchoring to the bottom of the body of water.
In one aspect, an assembly for use with an event timing system for determining a timing of passing of an aquatic timing point by a participant participating in a timed aquatic event, the participant has an RFID tag with a unique participant identifier. The participant can be a person, a boat, a vehicle or any other water based device. The system includes an elongated body having an upper end and a lower end, and a middle portion positioned between the upper end and the lower end. An RFID antenna mounting assembly is attached proximate to the upper end of the elongated body configured for mounting an RFID antenna. A stabilizer assembly is located at a fixed vertical position of the middle portion of the elongated body and includes a plurality of radially spaced apart coupling connectors. A plurality of anchors with each anchor having a mass significantly greater than water is configured for placement on a bottom of an aquatic body. Each anchor includes a coupling fixture. A plurality of anchor lines is provided having first ends for attachment to one of the coupling connectors of the stabilizer assembly and second ends for attachment to the coupling fixture of one of the anchors. One or more floatation devices are coupled to at least one of the elongated body and the stabilizer assembly. The floatation devices are selected, configured and/or dimensioned to have a sum of a buoyancy to provide substantial floatation of the elongated body and the stabilizer assembly following mounting of an antenna to the RFID antenna mounting assembly.
In another aspect, a system is provided for recording a passing of a participant participating in a timed aquatic event past an aquatic timing point with the participant having an RFID tag with a unique participant identifier. The system includes an RFID tag reader system having a processor, a memory, a clock, a communication interface, a radio frequency transceiver for generating a wireless communication with the RFID tag via an antenna. An aquatic antenna mounting assembly has an elongated body with an upper end and a lower end, and a middle portion positioned between the upper end and the lower end. An RFID antenna mounting assembly is attached proximate to the upper end of the elongated body for mounting an RFID antenna. The aquatic mounting assembly includes a stabilizer assembly located at a fixed vertical position of the middle portion of the elongated body and a plurality of radially spaced apart coupling connectors. The aquatic mounting assembly also includes a plurality of anchors, each anchor having a mass significantly greater than water for placement on a bottom of an aquatic body and each having a coupling fixture. A plurality of anchor lines is provided with each anchor line having a first end for attachment to one of the coupling connectors of the stabilizer assembly and a second end for attachment to the coupling fixture of one of the anchors. The assembly includes one or more floatation devices coupled to at least one of the elongated body and the stabilizer assembly. The flotation devices are configured and or selected so that the sum of their buoyancy provides a substantial floatation of the elongated body and the stabilizer assembly following mounting of an antenna to the RFID antenna mounting assembly. The aquatic antenna mounting assembly is positionable proximate to the aquatic timing point. The system also includes an RFID antenna mounted on the RFID antenna mounting assembly. The antenna is communicatively coupled to the radio frequency transceiver of the RFID tag reader system. The RFID tag reader system is configured for transmitting a tag read request from the antenna to the RFID tag of the participant and for receiving at the antenna one or more tag reads from the RFID tag, and then transmitting the tag read request and the tag reads between the RFID tag reader system and the antenna.
In yet another aspect, a system is provided for timing a plurality of participants participating in a timed aquatic event as they travel past at least one aquatic timing point, each participant having an RFID tag with a unique participant identifier. The system includes an event timing system having a processor for executing computer executable instructions, a memory for storing the computer executable instructions, and a communication interface. The event timing system is configured for receiving over the communication interface a plurality of RFID tag reads for each participant, determining a time for each tag read, and determining a lapse time of each participant in the timed aquatic event as a function of the plurality of RFID tag reads. The system also includes an RFID tag reader system having a processor, a memory, a clock, a communication interface for communicating with the event timing system and transmitting RFID tag reads as determined by the RFID tag read system to the even timing system. The RFID tag reader system has a radio frequency transceiver for generating a wireless communication with the RFID tag via an antenna. An aquatic antenna mounting assembly has an elongated body with an upper end and a lower end, and a middle portion positioned between the upper end and the lower end. An RFID antenna mounting assembly is attached proximate to the upper end of the elongated body configured for mounting an RFID antenna. A stabilizer assembly is located at a fixed vertical position of the middle portion of the elongated body and includes a plurality of radially spaced apart coupling connectors. It also includes a plurality of anchors with each anchor having a mass significantly greater than water for placement on a bottom of an aquatic body and each having a coupling fixture. The assembly also includes a plurality of anchor lines with each anchor line having a first end for attachment to one of the coupling connectors of the stabilizer assembly and a second end for attachment to the coupling fixture of one of the anchors. One or more floatation devices is coupled to at least one of the elongated body and the stabilizer assembly and their sum of their buoyancy is selected to provide substantial floatation of the elongated body and the stabilizer assembly following mounting of an antenna to the RFID antenna mounting assembly. The system also includes an aquatic antenna mounting assembly being positionable proximate to the aquatic timing point and an RFID antenna mounted on the RFID antenna mounting assembly. The RFID antenna is communicatively coupled to the radio frequency transceiver of the RFID tag reader system with the RFID tag reader system being configured for transmitting a tag read request from the antenna to the RFID tag and receiving at the antenna one or more tag reads from the RFID tag and also transmitting the tag read request and the tag reads between the RFID tag reader system and the antenna.
Further aspects of the present disclosure will be in part apparent and in part pointed out below. It should be understood that various aspects of the disclosure may be implemented individually or in combination with one another. It should also be understood that the detailed description and drawings, while indicating certain exemplary embodiments, are intended for purposes of illustration only and should not be construed as limiting the scope of the disclosure.
It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
The following description is merely exemplary in nature and is not intended to limit the present disclosure or the disclosure's applications or uses.
A system and method for determining the passing of a participant of an aquatic event by a water-based timing point including an RFID tag associated with the participant, an aquatic based RFID tag reading point having one or more aquatic tag reading assemblies placed in the water, each aquatic tag reading assembly having one or more RFID tag readers mounted thereon at a position above the surface of the water on an aquatic tag reader mounting assembly, the aquatic tag reader mounting assembly having a portion below the surface of the water and including at least one float system and at least one stabilization system.
In some embodiments, an assembly for use with an event timing system for determining a timing of passing of an aquatic timing point by a participant participating in a timed aquatic event, the participant has an RFID tag with a unique participant identifier. The participant can be a person, a boat, a vehicle or any other water based device.
The RFID antenna mounting assembly includes an elongated body having an upper end and a lower end, and a middle portion positioned between the upper end and the lower end. The elongated body can be of any form or construction. The elongated body is selected and configured for having the upper end positionable above the water line, with the lower end being positioned downward towards the bottom of the aquatic body. In some embodiments, the elongated body can be made of a metal or a plastic, can be round or rectangular. For example, in one embodiment, the elongated body can be primarily formed from a single tube of PVC and with enclosed or sealed adding buoyancy, or open for allowing in water into its center cavity. In other embodiments, the elongated body can be formed from more than one member.
An RFID antenna mounting assembly is attached proximate to the upper end of the elongated body configured for mounting an RFID antenna. This can be of any form and is often configured or provided based on the particular antenna to be mounted to the upper end of the elongated body. In some cases, the antenna mounting assembly can be single sided, but in others it can have two opposing sides for mounting two antennas in opposite facing directions. Of course it could also be configured for more sides and more antennas. The RFID antenna mounting assembly can be mounted to the top or upper end of the elongated body or to one of the sides proximate to the upper end. The antenna mounting assembly is positioned to be above the water level so that the mounted antenna thereon is above the surface of the water a predetermined distance for reading the RFID tags. This distance can be adjusted based on the expected position of the tags relative to the surface of the water (on a swimmer versus on a boat) as well as the expected read distance laterally within the water or from the antenna mounting assembly.
In some embodiments, one or more floatation devices are coupled to the elongated body at the middle portion thereon. These can aid in keeping the elongated body in a vertical or substantially vertical position in the water.
A stabilizer assembly is located at a fixed vertical position of the middle portion of the elongated body and includes a plurality of radially spaced apart coupling connectors. The stabilizer assembly is typically attached to a center portion of the elongated member for attachment of flotation devices for adding buoyancy as well as anchors for anchoring the antenna mounting assembly to a fixed position on the bottom of the aquatic body. In some embodiments, the stabilizer assembly includes a plurality of lateral members extending substantially perpendicular from the elongated body and wherein at least a portion of the coupling connectors are positioned proximate to a distal end of the lateral members. However, they do not have to be substantially perpendicular to the elongated body and can be placed at angles to the body or forming a superstructure about the elongated body. In other embodiments, the elongated body can be formed as a multi-frame structure with an upper extension. In such embodiments, the stabilizer assembly can be formed as an integral part of the elongated body, such as a central or lower portion thereof.
A plurality of anchors with each anchor having a mass significantly greater than water is configured for placement on a bottom of an aquatic body. Each anchor includes a coupling fixture. In some embodiments, the anchors are essentially just dead weights that can be temporarily or permanently placed on the bottom of the aquatic body at the place where the aquatic timing point is being defined.
A plurality of anchor lines is provided having first ends for attachment to one of the coupling connectors of the stabilizer assembly and second ends for attachment to the coupling fixture of one of the anchors. The anchor lines can be of a fixed length or can have at least one of the first end and the second end that is configured for adjusting a length of the anchor line and securing the adjusted length at a defined length position or at an adjustable position. Such an adjustable anchor line embodiment can useful to aid in the setting up of the antenna mounting assembly, or adjusted such to adjust the height of the upper end of the elongated body that extends above the surface of the water or for changes to the water level or turbulence such as due to a change of the tide.
One or more floatation devices can also be coupled the stabilizer assembly as well as to the elongated body or in the alternative thereto. Regardless, the floatation devices are selected, configured and or dimension to have a sum of a buoyancy to provide substantial floatation of the elongated body and the stabilizer assembly following mounting of an antenna to the RFID antenna mounting assembly. In some embodiments, the sum of the buoyancy of the floatation devices on the antenna mounting assembly is provided to be greater than the weight of the elongated body, the stabilizer assembly and the mounted antenna thereby providing for the floatation of the antenna mounting assembly until such is weighted down or tied down to the bottom of the aquatic body via the anchors and anchor lines. The upward floatation forces and their position on the assembly combined with the downward anchoring forces of the anchor lines and the anchors provides for stabilization of the antenna mounting assembly at the aquatic timing point in the water under a wide array of water conditions.
The floatation devices can be placed along the stabilizer assembly spaced apart and in some embodiments at least a portion of one or more floatation devices is positioned proximate to the distal ends of the lateral members that are spaced apart from the elongated body to provide a wider footprint in the water and under the surface of the water to increase stabilization in the water especially where water turbulence is greater. In such cases, lateral members can be extended outward to increase the in water footprint of the stabilizer assembly. In some embodiments, at least a portion of the one or more floatation devices is positioned on a lateral member proximate to the elongated body.
In some exemplary embodiment, the stabilizer assembly includes two elongated members having two opposing distal ends and a middle with each of the two elongated members attached to the elongated body about at the middle of each elongated member and positioned perpendicular to each other. Of course additional elongated members can be added to the standard X-pattern and can be formed into a star pattern or can be formed to include outward members for connecting the middle or distal ends of two or more of the elongated members that extend outward from the elongated member that is typically positioned near the center or middle point of the stabilizing assembly. As with the elongated body, the stabilizing member elements or elongated members can be of any suitable material or design, and can be a metal or PVC tube type structure in one embodiment, by way of example and not limited thereto.
In some embodiments, the stabilizer assembly can include on ore more supports to add strength and support to the elongated members and their attachment to the elongated body. For example, in some embodiments, each support has a first end coupled to a spaced apart position of the elongated body and a second end coupled to one of the elongated members at a positioned spaced apart from its connection to the elongated body. These can be on the upper end of the elongated body or the lower end or both. The supports can be of any form and made from any material and in one exemplary embodiment can be formed from metal or plastic rigid elements, or from cable or metal or other line material.
Of course with antenna mounting assembly, some embodiments can include the RFID antenna that is mounted to the RFID antenna mounting assembly. As will be discussed in more detail below, the RFID antenna is communicatively coupled to an RFID tag reader system positioned remote from the assembly for receiving and transmitting RF signals and messages there between and for providing power to the antenna for operation of reading the passing RFID tags. As noted above, the RFID antenna mounting assembly can have two opposing sides for mounting a first RFID antenna on a first side and a second RFID antenna on a second side. In such, embodiments, a first RFID antenna is mounted to the first side of the RFID antenna mounting assembly and a second RFID antenna is mounted to a second side of the RFID antenna mounting assembly. The first antenna can be configured for reading RFID tags in a first direction towards the first side and the second antenna can be configured for reading RFID tags in a direction of the second side.
Several exemplary embodiments of aquatic RFID antenna mounting assemblies are shown in
As will be understood by those of skill in the art, the aquatic antenna 104 can be any type of antenna for reading of a passing participant RFID tag or identifier. In some embodiments, the participant identifier is an RFID tag that can be an active RFID tag or a passive RFID tag, depending on the selection and use. Generally, herein, this disclosure will refer to RFID tags generally, but it should be understood that this is only for short hand and that any other type of participant identifying element or tag can also be applicable. As such, the aquatic antenna 104 can be the appropriate antenna for reading the selected participant tag and will generally be referred herein as an RFID Tag Reader Antenna or just antenna 104. These can be specialized water resistance or water proof RFID antenna such as an antenna which may be helpful in ensuring their operation under aquatic use conditions. Further, in some embodiments the RFID antenna 104 can be adapted to have specialized and adapted characteristics such as selection of an RF polarization, power or encoding, the selection of which may be customized to increase the performance in the presence of RF absorbing water and other antenna 104 in multiple antenna 104 installation. All such are considered within the scope of the present disclosure.
Further, in this exemplary embodiment, the stabilizing assembly 110 includes a stabilizing assembly frame 140 having two lateral members 140A and 140B formed in an X-shape each of which extend outward from the vertically positioned elongated body 109. In this example, the elongated body 109 includes a bottom end that is secured to an anchor 114 via anchor line 116 which is directly below the elongated body 109. The distal ends 113 of each of the lateral members 140A, 140B are coupled to anchor lines 116 with each also being coupled to anchors 114. Floatation devices 112 are positioned proximate to the distal ends 113 of each lateral member 140A, 140B as well as proximate to the elongated body 109.
In another embodiment,
During testing of some embodiments of the aquatic antenna assembly 102, the inventor continued to refine the design of the aquatic antenna mounting assembly 102 and its stabilization assembly 110 for use in aquatic timed events. At the time of the filing of the priority provisional application, the inventor continued to test and refine this design. One such design being tested is shown being tested in
Aquatic Tag Reader System
In other embodiments, a system is provided for recording a passing of a participant participating in a timed aquatic event past an aquatic timing point with the participant having an RFID tag with a unique participant identifier. The system includes an RFID tag reader system having a processor, a memory, a clock, a communication interface, a radio frequency transceiver for generating a wireless communication with the RFID tag via an antenna.
In some embodiments, a tag reader platform is provided with a platform body with buoyancy or additional platform floats and a plurality of platform anchors each attached to a spaced apart portion of the platform body by an anchor line. Other floating platforms such as a boat are also suitable where they can be anchored in a fixed position relative to the aquatic antenna mounting assembly/assemblies having the RF antenna and within RF communication therewith, which is often an RF cable or wired connection.
A radio frequency communication cable can couple the RFID antenna to the radio frequency transceiver of the RFID tag reader system. In some embodiments, the aquatic antenna mounting system includes securing fixtures for securing the communication cable in a fixed position relative to the elongated body. As described above, the RF cable can be of any suitable design and in some embodiments can include a conduit having an air tight cavity and an RF transmission line positioned within the air tight cavity coupling the RFID tag reader to the antenna mounted on the aquatic antenna mounting assembly as described above. This can include, but is not limited to, a rigid or flexible conduit. The RF transmission line can include, but is not limited to a coax line.
An aquatic antenna mounting assembly has an elongated body with an upper end and a lower end, and a middle portion positioned between the upper end and the lower end. An RFID antenna mounting assembly is attached proximate to the upper end of the elongated body for mounting an RFID antenna.
The aquatic mounting assembly includes a stabilizer assembly located at a fixed vertical position of the middle portion of the elongated body and a plurality of radially spaced apart coupling connectors. The aquatic mounting assembly also includes a plurality of anchors, each anchor having a mass significantly greater than water for placement on a bottom of an aquatic body and each having a coupling fixture. A plurality of anchor lines is provided with each anchor line having a first end for attachment to one of the coupling connectors of the stabilizer assembly and a second end for attachment to the coupling fixture of one of the anchors. The assembly includes one or more floatation devices coupled to at least one of the elongated body and the stabilizer assembly. The flotation devices are configured and or selected so that the sum of their buoyancy provides a substantial floatation of the elongated body and the stabilizer assembly following mounting of an antenna to the RFID antenna mounting assembly.
The aquatic antenna mounting assembly is positionable proximate to the aquatic timing point. The system also includes an RFID antenna mounted on the RFID antenna mounting assembly. The antenna is communicatively coupled to the radio frequency transceiver of the RFID tag reader system.
The RFID tag reader system is configured for transmitting a tag read request from the antenna to the RFID tag of the participant and for receiving at the antenna one or more tag reads from the RFID tag, and then transmitting the tag read request and the tag reads between the RFID tag reader system and the antenna.
Referring back to the exemplary embodiments shown in the drawings, an aquatic timing point 101 is illustrated having four aquatic participant lanes L1, L2, L3, L4 each with a swimming participant P1, P2, P3, P4 and each with participant tag PT1, PT2, PT3, PT4 respectively. Each is traveling an aquatic course C1, C2, C3, C4 also respectively. Three aquatic antenna assemblies 102A, 102B, 102C are positioned at the aquatic timing point 101 and are coupled to an RFID tag reader 150 via communication link 146. The RFID tag reader 150 is positioned on a platform 140, which in this example is anchored via anchor lines 116 to anchors 114 that are positioned on the aquatic ground AG similar to the anchoring of aquatic antenna assemblies 102A, 102B, 102C. The antennas 104A, 104B, 104C, 104D are configured for reading the passing participant tags PT1, PT2, PT3, PT4 when they are in read range thereof. As shown, antenna 104A mounted to aquatic antenna mounting assembly 102A is positioned and configured for reading participant tag PT1 of participant P1 that is in L1 and traveling along course C1. The antenna read of antenna 104A is provided to the RFID tag reader 150 via communication link 146 and the RFID tag reader 150 or a timing system integrated therewith or remote can determine the participant position PD1 as well as the passing of the participant P1 at a defined aquatic timing point 101 that is consistent for all lanes L1, L2, L3, L4 thereof. The antenna read of antenna 104B is provided to the RFID tag reader 150 via communication link 146 and the RFID tag reader 150 or a timing system integrated therewith or remote can determine the participant position PD2 as well as the passing of the participant P2 at the aquatic timing point 101. The antenna read of antenna 104C is provided to the RFID tag reader 150 via communication link 146 and the RFID tag reader 150 or a timing system integrated therewith or remote can determine the participant position PD3 as well as the passing of the participant P3 at the aquatic timing point 101. The antenna read of antenna 104D is provided to the RFID tag reader 150 via communication link 146 and the RFID tag reader 150 or a timing system integrated therewith or remote can determine the participant position PD4 as well as the passing of the participant P4 at the aquatic timing point 101.
Another embodiment another aquatic timing point 101 is shown in
In these examples of
The aquatic RFID tag reader system 150 can further be adapted in various embodiments so as to adjust or modify the tag readings by the antenna 104 from each of the antenna 104N such as those in the example of
In other embodiments, the aquatic RFID tag reader 150 can be adapted to reduce the number of tags read by each aquatic antenna 104 on each activation. Generally, each aquatic antenna 104 can be adapted to vary the amount of time that the aquatic antenna 104 is active for reading and obtaining tag reads. This tag reading inventory time can be reduced and rotated by the aquatic RFID tag reader system 150 more rapidly as in the above modified rotation, to improve tag reading performance. For example, in some instances, the aquatic tag reader system 150 can be adapted to reduce the antenna inventory times significantly down to 1/10th or 1/20th of a second or further. In this manner, each antenna 104 is active for less time, but the rotation among the multiple antennas 140 can be sped up.
In other embodiments, the aquatic tag reader system 150 can be adapted to narrow down the aquatic tag reads and eliminate problems with multiple and interfering tag reads. For example, in one embodiment, the system 150 is adapted to obtain one or more tag reads from a particular participant tag PT. After the system 150 obtains the desired tag read of the participant PT from an antenna 104, the system 150 can transmit via one of the reading antenna 104 a command to the participant tag PT to go into a sleep mode or to turn off for a defined period of time. In this manner, the participant tag PT such as a passive RFID tag will not respond to further RF messages from any of the antenna 104 until the passing of the sleep time. Times such as between 2 to 5 seconds have been determined to be desirable in some embodiments. The sending of such, can be after a single tag read, or after a determined tag read is the tag read that is the desired tag read for the determining the passing of the participant tag PT by the virtually defined aquatic timing point 101.
Aquatic Event Timing System
In another embodiment, a system is provided for timing a plurality of participants participating in a timed aquatic event as they travel past at least one aquatic timing point, each participant having an RFID tag with a unique participant identifier. the system includes an event timing system having a processor for executing computer executable instructions, a memory for storing the computer executable instructions, and a communication interface. The event timing system is configured for receiving over the communication interface a plurality of RFID tag reads for each participant, determining a time for each tag read, and determining a lapse time of each participant in the timed aquatic event as a function of the plurality of RFID tag reads.
The system also includes an RFID tag reader system having a processor, a memory, a clock, a communication interface for communicating with the event timing system and transmitting RFID tag reads as determined by the RFID tag read system to the even timing system. The RFID tag reader system has a radio frequency transceiver for generating a wireless communication with the RFID tag via an antenna. An aquatic antenna mounting assembly has an elongated body with an upper end and a lower end, and a middle portion positioned between the upper end and the lower end. An RFID antenna mounting assembly is attached proximate to the upper end of the elongated body configured for mounting an RFID antenna.
A stabilizer assembly is located at a fixed vertical position of the middle portion of the elongated body and includes a plurality of radially spaced apart coupling connectors. It also includes a plurality of anchors with each anchor having a mass significantly greater than water for placement on a bottom of an aquatic body and each having a coupling fixture. The assembly also includes a plurality of anchor lines with each anchor line having a first end for attachment to one of the coupling connectors of the stabilizer assembly and a second end for attachment to the coupling fixture of one of the anchors. One or more floatation devices is coupled to at least one of the elongated body and the stabilizer assembly and their sum of their buoyancy is selected to provide substantial floatation of the elongated body and the stabilizer assembly following mounting of an antenna to the RFID antenna mounting assembly.
The system also includes an aquatic antenna mounting assembly being positionable proximate to the aquatic timing point and an RFID antenna mounted on the RFID antenna mounting assembly. The RFID antenna is communicatively coupled to the radio frequency transceiver of the RFID tag reader system with the RFID tag reader system being configured for transmitting a tag read request from the antenna to the RFID tag and receiving at the antenna one or more tag reads from the RFID tag and also transmitting the tag read request and the tag reads between the RFID tag reader system and the antenna.
As described above, the RFID antenna mounting assembly can have two opposing sides for mounting a first RFID antenna on a first side and a second RFID antenna on a second side. The first RFID antenna is mounted to the first side of the RFID antenna mounting assembly and the second RFID antenna is mounted to a second side of the RFID antenna mounting assembly. The first antenna is configured for reading the RFID tag when it is in a direction of the first side and the second antenna is configured for reading the RFID tag when the RFID tag is in a direction of the second side. The radio frequency transceiver of the RFID tag reader is configured for communicating with each of the first and second RFID antenna and differentiating communications between the two antennas. In some embodiments, the system includes multiple aquatic antenna mounting assemblies, each having one or more RFID antenna mounted thereon and wherein each of the multiple aquatic antenna mounting assemblies are positioned spaced apart from one another at different aquatic timing points.
An example of an aquatic timing system is illustrated in
The first aquatic tag reader 150A is positioned in the water proximate to a first aquatic timing point 101A defined by two aquatic antenna 104A1 and 104A2, each of which are mounted on upwardly exposed ends of the elongated bodies 109A1 and 109A2 of aquatic antenna mounting assemblies 102A1 and 102A2, respectively. Each antenna 104A1 and 104A2 are coupled via a cable 146A to the tag reader 150A. At a spaced apart portion of the body of water, the second aquatic tag reader 150B is positioned in the water proximate to a second aquatic timing point 101B defined by two aquatic antenna 104B1 and 104B2, each of which are mounted on upwardly exposed ends of the elongated bodies 109B1 and 109B2 of aquatic antenna mounting assemblies 102B1 and 102B2, respectively. Each antenna 104B1 and 104B2 are coupled via a cable 146B to the tag reader 150B.
Referring back to
Next in process 814, the timing system 182 transmits a request for the status to determine if the aquatic tag reader system 150 is already transmitting. If it is determined that the aquatic tag reader system 150 is not transmitting in process 816, the timing system 182 continues in process 818 to turn off the transmitter and setting the RF power and verifying the setting is received by the aquatic tag reader system 150. However, if the aquatic tag reader system 150 is already transmitting as determined by process 816, the timing system 182 retrieves any existing chip or tag reads in process 822 from the aquatic tag reader system 150 and then turns off the transmitter in process 824. The processes continue to process 820 wherein the system sets the RF power and verifies the settings are received in process 820. Next, the method continues to process 826 wherein the desired antennas are enabled and verified as to their enablement. Next in process 828 the GEN2 cycles that are desired are enabled and verified. In process 830 the 1-N other parameters in the hardware are also enabled and the method verifies all parameters are valid and ready in process 832. At that point, the method enables the transmission of tag reads and the aquatic tag reader system 150 begins to make tag reads in process 834. The timing system 182 then monitors the tag reads and automatically adjusts the settings during operation as desired or needed in process 836. At some point after operation has been running, the monitored event will be over and the user of the system can then select an exit in process 838 and the system processing functions and methods end at process 840.
TRS and ATS Operating Environment
Referring to
The illustrated CPU 904 for an RFID semiconductor chip is of familiar design and includes an arithmetic logic unit (ALU) 914 for performing computations, a collection of registers for temporary storage of data and instructions, and a control unit 916 for controlling operation of the computer system 900. Any of a variety of processors, including at least those from Digital Equipment, Sun, MIPS, Motorola, NEC, Intel, Cyrix, AMD, HP, and Nexgen, is equally preferred but not limited thereto, for the CPU 904. This illustrated embodiment operates on an operating system designed to be portable to any of these processing platforms.
The memory system 906 generally includes high-speed main memory 920 in the form of a medium such as random access memory (RAM) and read only memory (ROM) semiconductor devices that are typical on an RFID semiconductor chip. However, the present disclosure is not limited thereto and can also include secondary storage 922 in the form of long term storage mediums such as floppy disks, hard disks, tape, CD-ROM, flash memory, etc., and other devices that store data using electrical, magnetic, and optical or other recording media. The main memory 920 also can include, in some embodiments, a video display memory for displaying images through a display device (not shown). Those skilled in the art will recognize that the memory system 906 can comprise a variety of alternative components having a variety of storage capacities.
Where applicable, while not typically provided on RFID tags or chips, an input device 910, and output device 912 can also be provided. The input device 910 can comprise any keyboard, mouse, physical transducer (e.g. a microphone), and can be interconnected to the computer 902 via an input interface 924 associated with the above described communication interface including the antenna interface for wireless communications. The output device 912 can include a display, a printer, a transducer (e.g. a speaker), etc., and be interconnected to the computer 902 via an output interface 926 that can include the above described communication interface including the antenna interface. Some devices, such as a network adapter or a modem, can be used as input and/or output devices.
As is familiar to those skilled in the art, the computer system 900 further includes an operating system and at least one application program. The operating system is the set of software or computer executable instructions that control the various computerized systems or components and their operation and allocation of resources. The application program is the set of software that performs a task desired by the user, using computer resources made available through the operating system. Both are typically resident in the illustrated memory system 906 that may be resident on the RFID semiconductor chip. These can include the tag reader system with computer implementable instructions stored in its memory that are accessible by and executable by the processor for performing one or more of the tag reader methods and means as described herein. Also, this can include the timing system with computer implementable instructions stored in its memory that are accessible by and executable by its processor for performing one or more of the timing system methods and means as described herein.
In accordance with the practices of persons skilled in the art of computer programming, the present disclosure is described below with reference to symbolic representations of operations that are performed by the computer system 900. Such operations are sometimes referred to as being computer-executed. It will be appreciated that the operations that are symbolically represented include the manipulation by the CPU 904 of electrical signals representing data bits and the maintenance of data bits at memory locations in the memory system 906, as well as other processing of signals. The memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, or optical properties corresponding to the data bits. One or more embodiments can be implemented in tangible form in a program or programs defined by computer executable instructions that can be stored on a computer-readable medium. The computer-readable medium can be any of the devices, or a combination of the devices, described above in connection with the memory system 906.
Generally, the detection line located along a route traveled by the RFID tags is a starting line, a finish line or an intermediary check point line. As such, while the current disclosure is not limited to timing or tracking of timed racing events, in the exemplary embodiment as described herein, the timing system is configured for receiving each of the RFID tag read messages and determining a lapsed time of the RFID tag traversing between at least two of the starting line, the intermediary check point line and the finish line, responsive to at least one of the received RFID tag read messages.
As one skilled in the art will understand after reviewing the present disclosure, while the primary exemplary embodiment as described herein has been related to timing passings or elapsed time of a tag used in an aquatic racing or other timed event, other applications of timing activities using RFID tags is also possible and considered within the scope of the present disclosure.
When describing elements or features and/or embodiments thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements or features. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements or features beyond those specifically described.
Those skilled in the art will recognize that various changes can be made to the exemplary embodiments and implementations described above without departing from the scope of the disclosure. Accordingly, all matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense.
It is further to be understood that the processes or steps described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated. It is also to be understood that additional or alternative processes or steps may be employed.
This application claims the benefit of U.S. Provisional Application No. 61/678,291, filed on Aug. 1, 2012. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3386407 | Mount | Jun 1968 | A |
3674225 | Johnson | Jul 1972 | A |
3965512 | Bennett et al. | Jun 1976 | A |
4142680 | Oswald et al. | Mar 1979 | A |
4505595 | Rose et al. | Mar 1985 | A |
4812845 | Yamada et al. | Mar 1989 | A |
4918630 | Plouff et al. | Apr 1990 | A |
5091895 | Chatwin et al. | Feb 1992 | A |
5140307 | Rebetez et al. | Aug 1992 | A |
5436611 | Arlinghaus, Jr. | Jul 1995 | A |
5493805 | Penuela et al. | Feb 1996 | A |
5511045 | Sasaki et al. | Apr 1996 | A |
5604485 | Lauro et al. | Feb 1997 | A |
5696481 | Pejas et al. | Dec 1997 | A |
5812049 | Uzi | Sep 1998 | A |
5821902 | Keen | Oct 1998 | A |
5883582 | Bowers et al. | Mar 1999 | A |
5973598 | Beigel | Oct 1999 | A |
6008773 | Matsuoka et al. | Dec 1999 | A |
6100804 | Brady et al. | Aug 2000 | A |
6204813 | Wadell et al. | Mar 2001 | B1 |
6278413 | Hugh et al. | Aug 2001 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6369697 | Poole | Apr 2002 | B1 |
6466178 | Muterspaugh | Oct 2002 | B1 |
6496806 | Horwitz et al. | Dec 2002 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6570487 | Steeves | May 2003 | B1 |
6577238 | Whitesmith et al. | Jun 2003 | B1 |
6696954 | Chung | Feb 2004 | B2 |
6703935 | Chung et al. | Mar 2004 | B1 |
6710713 | Russo | Mar 2004 | B1 |
6720930 | Johnson et al. | Apr 2004 | B2 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6839027 | Krumm et al. | Jan 2005 | B2 |
6888459 | Stilp | May 2005 | B2 |
6888502 | Beigel et al. | May 2005 | B2 |
6952157 | Stewart et al. | Oct 2005 | B1 |
6963270 | Gallagher, III et al. | Nov 2005 | B1 |
6989750 | Shanks et al. | Jan 2006 | B2 |
6995655 | Ertin et al. | Feb 2006 | B2 |
7009562 | Jenabi | Mar 2006 | B2 |
7019639 | Stilp | Mar 2006 | B2 |
7057511 | Shanks et al. | Jun 2006 | B2 |
7057975 | Stobbe | Jun 2006 | B2 |
7339478 | Le | Mar 2008 | B2 |
7508739 | Paes | Mar 2009 | B2 |
7589616 | Klatsmanyi et al. | Sep 2009 | B2 |
7605685 | Stewart et al. | Oct 2009 | B2 |
7605689 | Hein et al. | Oct 2009 | B2 |
8085136 | Stewart et al. | Dec 2011 | B2 |
8179233 | Kia | May 2012 | B2 |
20010040895 | Templin | Nov 2001 | A1 |
20020008622 | Weston et al. | Jan 2002 | A1 |
20020008624 | Paek | Jan 2002 | A1 |
20020044057 | Zirbes | Apr 2002 | A1 |
20020044096 | Chung | Apr 2002 | A1 |
20030014678 | Ozcetin et al. | Jan 2003 | A1 |
20030073518 | Marty et al. | Apr 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030189484 | Rust et al. | Oct 2003 | A1 |
20040006445 | Paek | Jan 2004 | A1 |
20050093976 | Valleriano et al. | May 2005 | A1 |
20050099269 | Diorio et al. | May 2005 | A1 |
20060097847 | Bervoets et al. | May 2006 | A1 |
20060097874 | Salesky et al. | May 2006 | A1 |
20060176216 | Hipskind | Aug 2006 | A1 |
20070076528 | Kirby | Apr 2007 | A1 |
20070097969 | Regnier | May 2007 | A1 |
20070182567 | Stewart et al. | Aug 2007 | A1 |
20070252770 | Kai et al. | Nov 2007 | A1 |
20070262871 | Yamagajo et al. | Nov 2007 | A1 |
20070272011 | Chapa, Jr. et al. | Nov 2007 | A1 |
20080021676 | Vock et al. | Jan 2008 | A1 |
20080139263 | He et al. | Jun 2008 | A1 |
20080143620 | Khatri | Jun 2008 | A1 |
20080246615 | Duron et al. | Oct 2008 | A1 |
20080246616 | Sakama et al. | Oct 2008 | A1 |
20080316032 | Kia | Dec 2008 | A1 |
20090015377 | Fogg et al. | Jan 2009 | A1 |
20090184806 | Kia | Jul 2009 | A1 |
20090231198 | Walsh et al. | Sep 2009 | A1 |
20090284368 | Case, Jr. | Nov 2009 | A1 |
20100019897 | Stewart et al. | Jan 2010 | A1 |
20100088023 | Werner | Apr 2010 | A1 |
20100271263 | Moshfeghi | Oct 2010 | A1 |
20100295943 | Cha et al. | Nov 2010 | A1 |
20100302910 | Howell | Dec 2010 | A1 |
20110054792 | McClellan | Mar 2011 | A1 |
20110141221 | Satterlee et al. | Jun 2011 | A1 |
20110298583 | Libby et al. | Dec 2011 | A1 |
20120115557 | Kia | May 2012 | A1 |
20120230240 | Nebat et al. | Sep 2012 | A1 |
20140052279 | Van Rens | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2009595 | Dec 2008 | EP |
2003-327331 | Nov 2003 | JP |
2006-053655 | Feb 2006 | JP |
2008-276353 | Nov 2006 | JP |
2008-299535 | Dec 2008 | JP |
4394600 | Oct 2009 | JP |
2010-088886 | Apr 2010 | JP |
10-2002-0008234 | Jan 2002 | KR |
10-2002-0065429 | Aug 2002 | KR |
10-0438359 | Jul 2004 | KR |
10-2010-0100500 | Sep 2010 | KR |
10-2010-0119271 | Nov 2010 | KR |
Entry |
---|
PCT Search Report, PCT US 2012-022132, Sep. 14, 2012. |
PCT Search Report, PCT US 2011-026717, Mar. 1, 2011. |
Electronic Product Code (EPC) Tag Data Standards Version 1.1 Rev. 1.24; EPC Global, Inc. Apr. 1, 2004. |
Integration of RFID and Cellular Technologies, UCLA, WINMEC 2004; Karali, Sep. 2004. |
Alien Debuts Gen 2 Interrogator, RFID Journal; O'Connor, Aug. 4, 2005. |
PCT Search Report, PCT US 2012-022125, Jan. 20, 2012. |
Electronic Product Code (EPC) Radio-Frequency Indentity Protocols Class-1 Generation-2 UHF FRID Protocol for Communications at 860 MHz-960 Mhz, Version 1.0.9; EPC Global, Inc., Jan. 2005. |
Electronic Product Code (EPC) Generation 1 Tag Data Standards Version 1.1 Rev.1.27; EPC Global, Inc., May 10, 2005. |
UHF Gen 2 System Overview, TI-RFID; Texas Instruments, Mar. 2005. |
Trolleyponder/Ecotag RFID Newsletter, No. 51; Trolley Scan Pty Ltd, Jan. 5, 2006. |
Tests on Timing Module for Sports Timing; Trolley Scan Pty, Jun. 2004. |
New for 2005—Best Racing now uses DAG chip timing; DAG 2005. |
Intermec RFID System Manual; Intermec 2005. |
RFID Primer; Alien Technology, 2004. |
DAG System Instructions, Version 4; Pygma Lyon (DAG), Jul. 9, 2004. |
DAG System Instructions—DAG Triathlon, Version 5; Pygma Lyon (DAG) Jul. 23, 2004. |
DAG System—Badgeur V2 Sport Version Datasheet; Pygma Lyon (DAG), Jul. 19, 2004. |
Alien RFID Academy Training Manual; Alien Technology, Sep. 22, 2004. |
Alien Advanced RFID Academy; Alien Technology, Mar. 16, 2005. |
Reader Interface Guide, V2.1.0; Alien Technology, 2004. |
Mobile RFID Reader with Database Wireless Synchronization, S. Sandoval-Reyes, et al, 2nd ICEEE and CIE2005, Mexico City, Sep. 7-9, 2005. |
PCT Search Report, PCT US 2012-022126, Jan. 20, 2012. |
Mitigating the Reader Collision Problem in RFID Networks with Mobile Readers, Shailesh M. Birair and Sridhar Iyer, Indian Institute of Technology, Mumbai, India, 400 076, IEEE, 2005. |
PCT Search Report, PCT US 2011-020901, Jan. 11, 2011. |
PCT Search Report, PCT US 2011-020905, Jan. 11, 2011. |
PCT Search Report, PCT US 2011-046032, Jul. 29, 2011. |
PCT Search Report, PCT US 2011-050570, Sep. 6, 2011. |
Number | Date | Country | |
---|---|---|---|
20140035729 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61678291 | Aug 2012 | US |