The present invention relates to RFID tags, RFID tag sets, and RFID systems, and particularly to an RFID tag suited for performing wireless communication with a metal object, an RFID tag set, and an RFID system.
The RFID (Radio Frequency Identification) system is conventionally used to achieve efficiency in physical distribution management, commodity management and the like. The RFID system is configured by an RFID tag including an IC chip, and a reader or a reader/writer for performing wireless communication with the RFID tag. The RFID tag is used by being attached to various articles, but change may occur in the communication distance due to the influence of the attaching article. In particular, the communication distance is significantly shortened if the attaching article is a metal surface.
When carrying out physical distribution management, commodity management and the like by attaching the RFID tag to all the articles, the shape of the RFID is preferably a shape that does not have projections as much as possible and that is thin so as to be easily handled.
The Patent Document 1 describes the RFID tag that satisfies the above request, that is, the RFID tag by which the communication distance is not shortened even if attached to a metal surface and that is thin and has few projections includes the RFID tag. The RFID tag “8” includes a dielectric substrate “1”, a grounding conductive unit “2” arranged on one main surface of the dielectric substrate “1”, a patch conductive unit “3” formed with a slot “4” arranged on the other main surface of the dielectric substrate “1”, an electrical connection unit “5” extended inward from the respective opposing portions of the slot “4”, and an IC chip “6” arranged inside the slot “4” and connected to the electrical connection unit “5” (the reference symbol in parentheses is the reference symbol used in patent document 1). In other words, the RFID tag “8” is an RFID tag that uses a patch antenna.
The above requests can be satisfied by using the patch antenna. However, the patch antenna has a high gain but has a very narrow frequency band. A so-called reverse L-shaped antenna is conventionally known as an antenna in which the frequency band is relatively broadband. The reverse L-shaped antenna is an antenna in which the middle of an element of a grounding type 1/4λ monopole antenna is bent at an angle of 90°, where the letter “L” of the alphabet can be seen upside down. The broadband can be achieved compared to the patch antenna by using the reverse L-shaped antenna, but it is difficult to cover all the usage frequencies of the RFID tag throughout the world of 860 MHz (EU: European Union) to 955 MHz (JP: Japan), and high gain is difficult to achieve compared to the patch antenna.
Patent Document 1: Japanese Unexamined Patent Publication No. 2007-243296
The present invention provides an RFID tag by which the communication distance is not shortened even when wireless communication is performed with a metal object and broadband and high gain are achieved, an RFID tag set, and an RFID system.
An RFID tag according to the present invention includes a grounding conductive plate; a first dielectric substrate stacked on one surface of the grounding conductive plate; an antenna section including a first antenna conductor and a second antenna conductor arranged on the first dielectric substrate; an IC chip for connecting the first antenna conductor and the second antenna conductor; a connecting portion for connecting either the first antenna conductor or the second antenna conductor and the grounding conductive plate; and a second dielectric substrate arranged on the other surface of the grounding conductive plate, wherein an electrical length of the antenna section and an electrical length of the grounding conductive plate are different.
The connecting portion may be a via or may be formed by bending one end side of the first antenna conductor.
The first antenna conductor and the second antenna conductor may differ in length.
The second antenna conductor may be formed to a meander shape.
The second antenna conductor may be formed with one end side folded back.
The grounding conductive plate may be formed to a meander shape.
An RFID tag set according to the present invention includes one of the RFID tag attached to an object, and a conductive plate connectable with the RFID tag, wherein the RFID tag set has the conductive plate being attached to the object while being interposed between the RFID tag and the object.
The RFID system according to the present invention includes one of the RFID tags described above, and a reader or a reader/writer that performs wireless communication with the RFID tag.
In accordance with still another aspect of the present invention, there is provided an RFID system including the RFID tag set, and a reader or a reader/writer that performs wireless communication with the RFID tag set.
As apparent from the description mad above, according to the present invention, the first antenna conductor and the second antenna conductor are arranged on the first dielectric substrate, and the grounding conductive plate is arranged between the first dielectric substrate and the second dielectric substrate. Thus, the communication distance is not shortened even when wireless communication is performed with a metal object, and broadband and high gain are achieved.
The embodiments of the present invention will be described below with reference to the drawings.
First, the outline of an RFID system 100 of the present invention will be described with reference to
In the RFID system 100 of the present invention, the reader/writer RW of portable type or fixed type can be applied, and the reader/writer RW may be a reader.
The configuration of the RFID tag 1 will be described below with reference to
As shown in
The grounding conductive plate 2 is made of conductive material such as copper, aluminum, and stainless steel, where the first dielectric substrate 3 is stacked on the upper surface (one surface) of the grounding conductive substrate 2.
The first dielectric substrate 3 is formed to a plate shape from synthetic resin material such as polyethylene, polyethylene terephtalate (PET), polypropylene, polyimide, where the antenna section 4 is arranged on the upper surface of the first dielectric substrate 3.
The antenna section 4 is formed by metal punching processing of copper, aluminum, stainless steel, or the like, or by etching processing. The antenna section 4 includes a first antenna conductor 4A and a second antenna conductor 4B that are spaced apart, where the IC chip 6 is mounted between the first antenna conductor 4A and the second antenna conductor 4B so that the first antenna conductor 4A and the second antenna conductor 4B are connected by the IC chip 6. The first antenna conductor 4A and the grounding conductive plate 2 are electrically connected by the via 7. The first antenna conductor 4A is formed short and the second antenna conductor 4B is formed long but the first antenna conductor 4A and the second antenna conductor 4B may have the same length.
The second dielectric substrate 5 is formed to a plate shape from synthetic resin material such as polyethylene, polyethylene terephtalate (PET), polypropylene, polyimide, and is arranged on the lower surface (other surface) of the grounding conductive plate 2.
As shown in
As shown in
As shown in
In the high frequency side, the upper layer side, that is, the portion including the antenna section 4, the first dielectric substrate 3, and the grounding conductive substrate 2 serves as a so-called reverse L-shaped antenna, and the electric field is radiated with such reverse L-shaped antenna as the center. In the low frequency side, on the other hand, the lower layer side, that is, the portion including the grounding conductive plate 2, the second dielectric substrate 5, and the metal object M serves as a so-called patch antenna, and the electric field is radiated with such patch antenna as the center.
When configured as the RFID tag 1 as a result to the simulation, it was found that broadband can be ensured, and higher gain can be realized at the same time while the grounding conductive plate 2 can function as a radiation element.
The inventors of the present invention performed the simulation to compare the broadband properties using the RFID tag using the patch antenna known from the prior art, the RFID tag (see
In
As apparent from the result, the band property of the same extent as the RFID tag using the reverse L-shaped antenna is obtained in air, and high gain of the same extent as the RFID tag using the patch antenna is obtained when attaching the RFID tag to the metal object. In other words, in the RFID tag 1 according to the present invention, the functions of both the reverse L-shaped antenna and the patch antenna are obtained, long distance communication can be enabled over a wide frequency and broadband is achieved according to the configuration described above, so that long distance communication can be available at the frequency of each country including the attachment to the metal surface.
Other embodiments of the present invention will be described below with reference to
An RFID tag 1A according to a second embodiment has a configuration in which the position of the via 7 moves to the second antenna conductor 4B side to connect with the grounding conductive plate 2 through the via 7 in the RFID tag 1 according to the first embodiment. Other configurations are similar to the RFID tag 1.
An RFID tag 1B according to a third embodiment connects a first antenna conductor 40A and the grounding conductive plate 2 by bending one end 40A-1A side of the first antenna conductor 40A for forming the RFID tag 1B rather than connecting the antenna section 4 and the grounding conductive plate 2 through the via 7 as in the RFID tag 1 according to the first embodiment. Such configuration can be realized by processing in the following manner. For instance, one sheet of conductive plate is bent to a square shape (horseshoe shape). In this case, the first dielectric substrate 3 is to be taken in towards the inner side. The upper surface of the first dielectric substrate 3 is subjected to etching process in such state, so that the first antenna conductor 40A and the second antenna conductor 4B are formed. In such configuration, the attachment hole 8 for attaching the RFID tag 1B to the metal object M is preferably formed on the four sides of the RFID tag 1B as shown in
Briefly describing the configuration of an RFID tag according to a fourth embodiment to a sixth embodiment, the shape of the RFID tags 1C, 1D according to the fourth embodiment and the fifth embodiment is made by structurally changing the antenna section 4 of the RFID tag 1, and the shape of the RFID tag 1E according to the fifth embodiment is made by structurally changing the grounding conductive plate 2 of the RFID tag 1. The illustration is simplified in
Specifically describing, the RFID tag 1C differs from the configuration of the RFID tag in that the second antenna conductor 40B in which the shape of the second antenna conductor is formed to a meander shape as shown in
The RFID tag 1E differs from the configuration of the RFID tag 1 in that the grounding conductive plate 20 in which the entire grounding conductive plate is formed to a meander shape by forming notches N1, N2 as shown in
The RFID tag may be manufactured using both the antenna section (portion including 4A and 40B) shown in
The configuration of the RFID tag according to the present invention will be described with reference to
In conclusion, the RFID tag set 10 of the present invention has a configuration in which a conductive plate 9 is arranged in advance in the RFID tag according to the first embodiment to the fifth embodiment described above. In other words, in all the RFID tags according to the first embodiment to the fifth embodiment, the metal surface of the metal object M that is the attaching target functions as a grounding conductor on the patch antenna side so that the function similar to the patch antenna can be exhibited on the lower layer side. However, in the RFID tag set 10 according to the present embodiment, the functions of both the reverse L-shaped antenna and the patch antenna can be exhibited on a constant basis irrespective of the attribute (whether a metal object or not) of the attaching target by configuring the conductive plate 9 to be detachable with one of the RFID tag according to the first embodiment to the fifth embodiment in advance.
Such RFID tag set 10 includes the RFID tag 1 described above, and the conductive plate 9 perforated with two attachment holes 91, 91 in correspondence with the positions of the two attachment holes 8, 8 of the RFID tag 1. As shown in
Since the conductive plate 9 functions as the grounding conductor of the patch antenna, the communication between the RFID tag 1 and the reader/writer RW stabilizes if formed large compared to the size of the RFID tag 1.
Number | Date | Country | Kind |
---|---|---|---|
2008-228819 | Sep 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/065163 | 8/31/2009 | WO | 00 | 5/13/2011 |