This disclosure relates to the field of rheological probes used to measure a rheological property of a substance in which they are displaced, and has specific applications in the field of ready-mix concrete production and handling.
Rheology includes the study of the flow of soft solids which exhibit fluid-like behaviors. Many applications can benefit from or even require the measurement of rheological properties of substances, particularly in cases where such properties change over time.
Ready-mix concrete is a good example. Between production and use, ready-mix concrete is typically continuously mixed in a mixer (typically a mixer truck) to prevent its premature solidification. However, even though mixing has a recognized effectiveness at maintaining the state of ready-mix concrete, it does have its limits. Some rheological properties of ready-mix concrete, such as viscosity and yield, can vary over time notwithstanding the mixing. Accordingly, ready-mix concrete can require monitoring and, eventually, adjustments (e.g. addition of water, addition of plasticizer) to maintain a satisfactory workability until end use.
Traditionally, a test referred to as the ‘slump test’ was traditionally used to monitor the ready-mix concrete. The slump test involves removing concrete from the mixer, placing it in a truncated cone of a given height, removing the cone, waiting for the concrete to settle, and measuring the distance the concrete had slumped down relative to the length of the truncated cone.
In more recent years, technological advancements have led to new methods and devices which have achieved many advantages over the traditional slump test. The rheological probe described in International Patent Publication WO 2011/042880 A1 is an example of such technological advancements. Although existing rheological probes were satisfactory to a certain degree, there remained room for improvement. In particular, it will be understood that durability, measurement precision, cost and manufacturability can represent significant considerations in the choice of a probe.
In accordance with an aspect, there is provided a rheological probe having a base, an inner member fixed relative to the base, and a shell member covering the inner member. The shell member can have a proximal portion with mating features (e.g., rockers) pivotally mounted with corresponding mating features (e.g., recessed features) of the base to allow the shell member to pivot when the rheological probe is moved in a rheological substance. In some embodiments, the inner member has a longitudinal cavity along the inner member, and the shell member further includes a securing member extending within the inner member, having a first end secured to a distal portion of the shell member and a second end secured to the base to maintain the engagement between the mating features of the shell member and the corresponding mating features of the base.
In accordance with another aspect, there is provided a rheological probe having a base, an inner member fixed relative to the base, and a shell member covering the inner member. The shell member can have a pushing member engaged with the inner member at the distal end. The pushing member can be abutingly engaged with a sliding face of the inner member in a manner to communicate normal forces thereto to deform a deformable portion of the inner member when the rheological probe is moved in a rheological substance, while being allowed to slide longitudinally and/or circumferentially thereagainst, which can avoid transmittal of forces other than a normal force.
In accordance with one aspect, there is provided a rheological probe comprising: a base; an inner member fixedly connected to the base and extending longitudinally away from the base, the inner member having in succession a base portion proximate to the base, and a tip away from the base, and a deformable portion located between the base portion and the tip; a shell member covering the inner member, the shell member having a proximal portion being pivotally connected to the base for pivoting about a pivot axis when subjected to a resistance pressure imparted by a relative movement of the probe in a rheological substance, and a distal portion, the distal portion being connected to the tip to transfer a force resulting from the resistance pressure and thereby elastically deform the deformable portion, the shell member having mating features being pivotally engaged with corresponding features of the base, the mating features being located on transversally opposite sides of the proximal portion; and a deformation sensor mounted to the deformable portion for providing a value indicative of the resistance pressure.
In accordance with another aspect, there is provided a rheological probe comprising: a base; an inner member fixedly connected to the base and extending longitudinally away from the base, the inner member having in succession a base portion proximate to the base, and a tip away from the base, and a deformable portion located between the base portion and the tip; a shell member covering the inner member, the shell member having a proximal portion being pivotally connected to the base for pivoting about a pivot axis when subjected to a resistance pressure imparted by a relative movement of the probe in a rheological substance, and a distal portion, the distal portion being connected to the tip to transfer a force resulting from the resistance pressure and thereby elastically deform the deformable portion, the shell member having a pushing member extending longitudinally inwardly from the distal portion of the shell member, the pushing member being abutingly engaged with a sliding face of the inner member in the orientation of the resistive force; and a deformation sensor mounted to the deformable portion for providing a value indicative of the resistance pressure.
Many further features and combinations thereof concerning the present improvements will appear to those skilled in the art following a reading of the instant disclosure.
In the figures,
Reference is made to
Following this example, reference will be made to concrete as being the substance to rheologically characterize; but it is understood that the probe 12 can be used with another container or recipient than a mixer truck drum 14, rotary or not, which may contain other substances exhibiting rheological properties such as fluids for the food processing industry, the paint industry, the oil industry, etc. Similar mixers are not necessarily provided on trucks, and other types of mixers can be used. For example, the mixer can be an industrial mixer, a stationary mixer, a blending system including high shear mixers, in-line mixers, or agitators.
Returning to the example of a mixer truck,
During use, the probe 12 rotates with the drum 14 in the rotating direction shown by arrows 28, or in the opposite direction, depending on whether the drum 14 is mixing or emptying the load of concrete 30. In both cases, the concrete 30 remains toward the bottom of the drum 14 due to the action of gravity and its limited viscosity. The probe 12 is thus immersed into the concrete 30 at each revolution and travels therein. The concrete 30 exerts a resistance pressure shown schematically with arrows opposing the movement of the probe 12. Amongst many alternative possibilities, the probe 12 can directly measure parameters such as the position of the probe, the force (or resistance pressure exerted by the substance on the probe), the temperature, etc. The probe 12 can subsequently use these parameters to determine the speed, and thence use speed and force values for instance to obtain an indication of properties of the fluid such as the viscosity, the yield, the cohesion, etc, to name some examples. The probe 12 can be made of any suitable material, but it will be understood that in the context of the relatively harsh environment of ready-mix concrete, stainless steel can be preferred for rigid components designed to be exposed to the ready-mix concrete.
In another embodiment, for example, the container can be fixed and a probe can be moved manually, be provided on rails or have other movement means over the container where the movement means can be used to displace the probe at speeds which can optionally be controlled.
Broadly described, the probe 12 has an inner member 40, which is secured to the base 20 and extends into the drum 14. The inner member 40 can be secured to the base 20 by fastening or soldering, for instance.
The inner member 40 extends longitudinally away from the base 20, thus defining a longitudinal orientation to the probe 12. The inner member 40 has in succession a base portion 46 proximate to the base 20, and a tip 48 away from the base 20, and a deformable portion 50 located between the base portion 46 and the tip 48.
As depicted, the probe 12 has a shell member 52 having a hollow interior, which covers the inner member 40 and plays the role of receiving the resistance pressure from the rheological substance. The shell member 52 has a proximal portion 54 being pivotally engaged to the base 20 for pivoting about a pivot axis normal to the page bearing
A deformation sensor 60 is mounted to the deformable portion 50 for providing a value indicative of the resistance pressure during use. In some embodiments, the deformation sensor 60 includes one or more strain gauges 62.
As best seen in
As best shown in
As depicted, the two rockers 64 (male features) are provided at the proximal portion 54 of the shell member 52, and the recesses 66 (female features) are provided in the base 20. However, in alternate embodiments, the two rockers 64 (male features) can be provided in the base 20 whereas the recessed features 66 (female features) can protrude from the proximal portion 54 of the shell member 52.
In this specific embodiment, and referring back to
In this embodiment, the securing member 70 is provided in the form of a rod 74. In an alternate embodiment, the securing member 70 can be provided in the form of a cable tensioned between the distal portion 58 of the shell member 52 and the base 20, for instance.
As can be understood, the securing member 70 can be used to secure the shell member 52 relatively to the base 20 while still allowing the shell member 52 to pivot about the pivot axis 56. To this end, the securing member 70 is preferably selected in a manner to be adapted to accumulate a functional level of tension stress, while being pivotable or elastically flexible in the transversal direction to the extent of allowing satisfactory pivotal movement of the shell member 52.
In this embodiment, both the shell member 52 and the base portion 46 of the inner member 40 are generally cylindrical in cross-sectional shape. The base portion 46 of the inner member 40 is firmer (thicker in this case) than the deformation portion 50. An annular gap having a precisely controlled dimension is provided between the inner diameter of the shell member 52 and the outer diameter of the base portion 46 in a manner that when the amplitude of the force exerted by the concrete against the shell member 52 exceeds a given threshold, the deformation portion 50 yields elastically to the extent that the inner diameter of the shell member 52 comes into abutment against the outer diameter of the base portion 46 in the area where the base portion 46 meets the deformation portion 50, preventing further deformation of the deformation portion. This can avoid the deformation of the deformation portion reaching a plastic deformation stage when excessive forces occur (e.g. during shocks or when operating in unmixed or otherwise unhomogeneous ready-mix concrete).
Reference is now made to
To provide the spacing 76, in this embodiment, the rockers 64 are designed to extend longitudinally away from the edge 78 for a first length L1 whereas the recesses 66 are designed to penetrate into a face 65 of the base 20 for a second length L2, wherein the second length L2 is smaller than the first length L1.
The base 20 can be provided with a neck 67 which protrudes from the face 65 and surrounds the shell member 52 along a given distance D. The spacing between the neck 67 and the shell member 52 can be filled with a sealing material 80. The sealing material 80 can be used to prevent the rheological substance to enter between the proximal portion 54 of the shell member 52 and the inner member 40 via the spacing 76. A sealing material being both resistant to ready-mix concrete can be selected and sufficiently flexible to limit any hindrance on the pivoting movement of the shell member 52 can be selected.
It will be noted that in this embodiment, the neck 67 has an upper face which extends transversally (in the direction of relative movement between the probe and the ready mix concrete, normal to the longitudinal orientation of the length of the probe), and the sealing material 80 also has an upper face which extends transversally, forming a continuity with the upper face of the neck. This configuration was found to limit the exposure of the sealing material 80 with the friction against ready-mix concrete, and thus favor wear resistance.
The seal 80 may be provided in the form of a sealant applied using a sealing gun which solidified after application thereof. However, to prevent the sealant pushed by the sealing gun to obstruct the spacing 76, a first sealing ring 82 can be used. In this embodiment, the first sealing ring 82 is provided around the edge 78 of the proximal portion 54 of the shell member 52 and is abutted on the base 20. In this embodiment, this first sealing ring 82 is an X-ring, which was found suitable in this specific configuration. As depicted, the first sealing ring 82 is sized and shaped to prevent the sealant from entering in the spacing 76.
Still in this embodiment, a second sealing ring 84 is provided between the base portion 46 of the inner member 40 and the proximal portion 54 of the shell member 52. In this embodiment, the second sealing ring 84, or internal sealing ring, is an O-ring.
In some embodiments, the proximal portion 54 of the shell member 52 is provided with a first annular recess 86 around the proximal portion 54. Similarly, the base 20, and more specifically the inside surface of the neck thereof, is provided with a second annular recess 88 around the base 20 and facing inwardly towards the proximal portion 54 of the shell member 52. In this example, the first and second annular recesses 86 and 88 can provide anchor points for the sealing material of the seal 80, which can help maintaining the proximal portion 54 of the shell member 52 into position. In an alternate embodiment, only one such anchor can be provided for instance, or none at all.
In this example, the base portion 46 of the inner member 40 is welded to the base 20. Alternately, the base portion 46 of the inner member 40 may be secured to the base 20 via a threaded engagement. In this example, the securing member 70 is a bolt having a bolt head 94 snugly received in a bolt head recess 96 of the base portion 46 of the inner member 40.
The shell member 52 includes a cap 98 to which is fixed the first end 72a of the securing member 70. In this example, the first end 72a of the securing member 70 has externally facing threads, and the cap 98 of the shell member 52 has a bore 100 having inwardly facing threads so that the first end 72a is screwed to the cap 98 via rotation of the bolt head 94. In this embodiment, the cap 98 is welded internally to the distal end of a hollow cylindrical tube of the shell member 52. The position of the weld is such that its exposure to the ready-mix concrete is limited, which can contribute to wear resistance.
As presented above, the shell member 52 is mounted to the tip of the inner member 40 in a manner to transfer the normal force stemming from the resistance pressure of the ready-mix concrete against the shell member 52, as the shell member 52 is moved in the ready-mix concrete. This can be achieved by forming a rigid connection (e.g. welding) between the tip of the shell member 52 to the tip of the inner member 40, for instance. In the embodiment shown in the figures, however, it was preferred to the achieve the mounting of the shell member 52 to the tip of the inner member 40 via a longitudinally and circumferentially sliding engagement. Indeed, as can be seen, the shell member 52 has a pushing member 102 extending longitudinally inwardly from the distal portion of the shell member 52, e.g., the cap 98. The pushing member 102 is slidingly received within a cylindrical wall having an internal sliding face 104. The pushing member 102 is operable to abut against the cylindrical wall and deform the deformation portion of the inner member 40 when moved in the orientation of the resistive force, i.e. the x-axis in this example. However, the sliding engagement prevents the transfer of longitudinally oriented forces (e.g. z-axis) which could otherwise be transferred and perhaps distort the deformation linearity of the deformation portion proportionally to the amplitude of the x-axis force. Accordingly, the sliding engagement may improve the precision of the reading of the deformation sensors 60. in this embodiment, the sliding face 104 of the inner member 40 extends longitudinally, i.e. along the z-axis in this example so that the pushing member 102 is slidable along the sliding face 104 in the longitudinal orientation. This configuration can allow to reduce the deformation of the deformable portion 50 of the inner member 40 when a force is applied on the shell member 52 along either direction of the longitudinal orientation, i.e. the z-axis.
As can be understood, the examples described above and illustrated are intended to be exemplary only. For instance, instead of using a tensioning member to hold the shell member to the base, screws can be used to hold the rockers, or pivot pins can be used across the rockers, for instance. The scope is indicated by the appended claims.
This application is a national phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2017/071816 filed Aug. 30, 2017, which claims priority to U.S. Provisional Patent Application No. 62/381,721 filed Aug. 31, 2016. The entire contents of each of the above-referenced disclosures is specifically incorporated by reference herein without disclaimer.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/071816 | 8/30/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/041922 | 3/8/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3147612 | Evans | Sep 1964 | A |
3631712 | Mercier | Jan 1972 | A |
3640121 | Mercier | Feb 1972 | A |
3688588 | Hill | Sep 1972 | A |
4148215 | Hofstetter, Jr. | Apr 1979 | A |
4193291 | Lynnworth | Mar 1980 | A |
4869098 | Haakana | Sep 1989 | A |
5086646 | Jamison | Feb 1992 | A |
5131265 | Tobin | Jul 1992 | A |
6918292 | Go Boncan | Jul 2005 | B2 |
6957586 | Sprague | Oct 2005 | B2 |
D638729 | Beaupree | May 2011 | S |
9199391 | Beaupre | Dec 2015 | B2 |
9702863 | Beaupre | Jul 2017 | B2 |
10052794 | Beaupre | Aug 2018 | B2 |
10126288 | Radjy | Nov 2018 | B2 |
10429285 | Uusivirta | Oct 2019 | B2 |
10520410 | Beaupre | Dec 2019 | B2 |
10527534 | McAnally | Jan 2020 | B2 |
20050087002 | Kanzaki | Apr 2005 | A1 |
20070295104 | Ellegood | Dec 2007 | A1 |
20120204625 | Beaupre et al. | Aug 2012 | A1 |
20150355160 | Berman | Dec 2015 | A1 |
20160025700 | Beaupre | Jan 2016 | A1 |
20170108421 | Beaupre | Apr 2017 | A1 |
20180100791 | Beaupre | Apr 2018 | A9 |
20200018741 | Roberts | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2552707 | May 1977 | DE |
2632076 | Jan 1978 | DE |
0924040 | Jun 1999 | EP |
1060459 | Mar 1967 | GB |
WO-2005029045 | Mar 2005 | WO |
WO-2007060272 | Jul 2007 | WO |
Entry |
---|
Communication pursuant to Article 94(3) EPC, issued for European Application No. 17761852.7, dated Jan. 15, 2020, 6 pages. |
International Search Report and Written Opinion from PCT/EP2017/071816 dated Dec. 11, 2017, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20190242802 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62381721 | Aug 2016 | US |