Rheology-modifying agents for slurries

Information

  • Patent Grant
  • 10822442
  • Patent Number
    10,822,442
  • Date Filed
    Monday, July 9, 2018
    6 years ago
  • Date Issued
    Tuesday, November 3, 2020
    4 years ago
Abstract
The present disclosure relates to rheology-modifying agents and methods of modifying the rheology of slurries. A rheology-modifying agent may be added to a slurry. The rheology-modifying agent may include a polymer and the polymer may include at least three chemically different monomers. The slurry may include lime and/or magnesium hydroxide.
Description
BACKGROUND
1. Field of the Invention

The present disclosure generally relates to rheology-modifying agents useful for modifying the rheology of slurries. More particularly, the present disclosure relates to rheology-modifying agents useful for modifying the rheology of lime slurries and/or magnesium hydroxide slurries.


2. Description of the Related Art

Slurries of lime and/or magnesium hydroxide are commonly added to lime and warm lime softeners to treat water hardness (i.e., remove hard water ions) and to assist in silica removal. If these ions are not removed from the water, the subsequent equipment that contacts the water will obtain hard water deposits and fouling of the equipment will occur. Hard water fouling can occur in, for example, heat exchangers, evaporators, and boilers. Heat exchangers, evaporators, and boilers can be used to produce hot water and/or steam, which may be used in various processes, such as hydrocarbon production and power generation. Further, lime and magnesium hydroxide slurries can also be added to scrubbers to assist with the scrubbing of acid gasses, such as SO2, H2S, and CO2, and magnesium hydroxide slurries can be used for adjusting pH during wastewater treatment.


Feed lines are used to transport the slurries to the various pieces of equipment used in the processes. Without proper treatments for the lime and magnesium hydroxide slurries, the lime and magnesium can form deposits in the feed lines, thereby reducing the slurry feed flow, and eventually plugging or clogging the feed line. Once clogged, the hard deposits in the feed lines are typically removed or dissolved by cleaning the feed lines with acids, such as HCl, which is not safe and not easy to handle. Moreover, such an acid treatment requires special procedures for waste disposal.


Prior art methods used to clean clogged feed lines are thus dangerous, costly, and require extended periods of downtime. When a slurry feed line becomes clogged, the entire operation needs to be shut down, the feed lines need to be taken off-line, and subsequently cleaned with an acid. In certain processes, these steps must be repeated, sometimes as frequently as once a week, thereby greatly increasing the total time needed to achieve the intended goal of the overall process, such as hydrocarbon production.


BRIEF SUMMARY

The present disclosure provides rheology-modifying agents and methods of modifying the rheology of slurries.


In some embodiments, the present disclosure provides a method of modifying the rheology of a slurry. The method comprises the step of adding a rheology-modifying agent to the slurry, the rheology-modifying agent comprising a polymer, wherein the polymer comprises a first monomer, a second monomer, a third monomer, and a fourth monomer, wherein the first, second, third, and fourth monomers are chemically different.


In some embodiments, the slurry comprises magnesium hydroxide. In certain embodiments, the slurry comprises lime.


In some embodiments, the polymer is added to the slurry in an amount of about 0.01 ppm to about 1,000 ppm.


In certain embodiments, the rheology-modifying agent comprises sodium carbonate.


In some embodiments, the rheology-modifying agent excludes phosphorous.


In at least one embodiment, the first monomer is selected from the group consisting of acrylic acid (“AA”), methacrylic acid (“MAA”), a butenoic acid, a pentenoic acid, a propenoic acid, maleic acid (“MA”), maleic anhydride, fumaric acid, itaconic acid, glutaconic acid, muconic acid, succinic acid, citric acid, aconitic acid, a salt of any of the foregoing acids, and a conjugate base of any of the foregoing acids.


In particular embodiments, the polymer comprises about 55 mol %, or more, of the first monomer.


In some embodiments, the second monomer is selected from the group consisting of a second sulfonated acid, a second carboxylic acid, a salt of any of the foregoing acids, and a conjugate base of any of the foregoing acids. In some embodiments, the second monomer is selected from the group consisting of 2-acrylamido-2-methylpropane sulfonic acid (“ATBS”), sulfostyrene, vinylsulfonic acid, methallylsulfonic acid, a salt of any of the foregoing acids, and a conjugate base of any of the foregoing acids. In certain embodiments, the polymer comprises about 45 mol %, or less, of the second monomer.


In at least one embodiment, the third monomer is selected from the group consisting of a third sulfonated acid, a third carboxylic acid, a salt of any of the foregoing acids, a conjugate base of any of the foregoing acids, and an alkylated molecule. In some embodiments, the alkylated molecule is selected from the group consisting of N-tert-butylacrylamide, N-isopropylacrylamide, butoxymethylacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, a dimethylamino ethyl methacrylate acid salt, and N-vinylpyrrolidone. In certain embodiments, the polymer comprises about 10 mol %, or less, of the third monomer.


In some embodiments, the fourth monomer is selected from the group consisting of an alkylated molecule, a fourth carboxylic acid, a salt of the fourth carboxylic acid, and a conjugate base of the fourth carboxylic acid.


In some embodiments, the polymer comprises a fifth monomer, which is chemically different than the first, second, third, and fourth monomers.


In certain embodiments, the polymer comprises about 85 weight % AA, about 10 weight % ATBS, about 3 weight % itaconic acid, and about 2 weight % tert-butyl acrylamide.


In particular embodiments, the polymer comprises a weight average molecular weight of about 500 g/mol to about 30,000 g/mol.


In at least one embodiment, the polymer comprises a tagging agent.


In some embodiments, the present disclosure provides a method of modifying the rheology of a slurry. The method comprises the step of adding a rheology-modifying agent to the slurry, the rheology-modifying agent comprising a polymer, wherein the polymer comprises a first monomer, a second monomer, and a third monomer, wherein each of the first, second, and third monomers are chemically different, provided that the polymer does not comprise a combination of acrylic acid, acrylamide, and sulfonated acrylamide.


In still further embodiments, the present disclosure provides for the use of a rheology-modifying agent to modify the rheology of a slurry, the rheology-modifying agent comprising a polymer, wherein the polymer comprises a first monomer, a second monomer, a third monomer, and a fourth monomer, wherein the first, second, third, and fourth monomers are chemically different. The slurry may comprise a member selected from the group consisting of lime, magnesium hydroxide, and any combination thereof.


The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter that form the subject of the claims of this application. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent embodiments do not depart from the spirit and scope of the disclosure as set forth in the appended claims.


BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Not applicable.







DETAILED DESCRIPTION

The present disclosure relates to compositions and methods for modifying the rheology of slurries. In certain aspects, the slurries are lime slurries. “Lime” may also be referred to as calcium oxide or CaO. In other aspects, the slurries are magnesium hydroxide slurries.


Lime slurries can become highly viscous, for example, when they have more than about a 30% lime concentration. In accordance with the present disclosure, various rheology-modifying agents are disclosed that can beneficially modify the rheology of the lime slurries (and/or magnesium hydroxide slurries), thereby inhibiting or minimizing deposit formation and feed line clogging. In accordance with the present disclosure, high molecular weight lime slurries (and/or magnesium hydroxide slurries) may be prepared with reduced viscosities by adding one or more rheology-modifying agents to the slurries.


In some aspects, a rheology-modifying agent is added to a lime slurry (or a magnesium hydroxide slurry) to modify its rheology. Not only can the rheology-modifying agent reduce the viscosity of a slurry, it can prevent agglomeration of lime particles. The rheology-modifying agent may also act as a scale inhibitor and reduce scaling during application of the lime (or magnesium hydroxide) slurry. In some aspects, the rheology-modifying agent comprises one or more polymers. In some aspects, the rheology-modifying agent comprises one or more polymers and sodium carbonate. The polymers may include three or more polymerized monomers, such as 3-10 monomers, 3-7 monomers, 3-5 monomers, 3 monomers, 4 monomers, 5 monomers, or more than 5 monomers, as further described below. The polymers (and rheology-modifying agents comprising the polymers) may be free of (or substantially free of) phosphorous or phosphorous-containing materials, such as phosphates, phosphonates, and the like.


The monomers that can be polymerized to form the polymers disclosed herein are not particularly limited. For example, a first monomer may be selected from AA, MAA, a butenoic acid (e.g., crotonic acid), a pentenoic acid, a propenoic acid, any other unsaturated monocarboxylic acid capable of polymerizing, and any combination thereof. Dicarboxylic acid monomers may also be used, such as MA or maleic anhydride, fumaric acid, itaconic acid, glutaconic acid, muconic acid, succinic acid, any other unsaturated dicarboxylic acid or anhydride thereof capable of polymerizing, and any combination thereof. Tricarboxylic acids (or greater) may also be used, such as citric acid, aconitic acid, or any other carboxylic acid having three or more carboxylic acid moieties. The polymers may also comprise a salt of any of the foregoing or a conjugate base of any of the foregoing. Carboxylic acid salts may include lithium, beryllium, sodium, magnesium, potassium, calcium, and zinc, for example.


The first monomer may constitute about 55 mol %, or more, of the polymer, such as about 55 mol % to about 99 mol %, about 60 mol % to about 98 mol %, about 70 mol % to about 95 mol %, about 80 mol % to about 99 mol %, about 90 mol % to about 97 mol %, about 93 mol % to about 99 mol %, about 96 mol % to about 99 mol %, about 92 mol % to about 94 mol %, about 83 mol % to about 87 mol %, about 88 mol % to about 92 mol %, about 93 mol % to about 96 mol %, about 95 mol % to about 98.5 mol %, about 60 mol %, about 70 mol %, about 80 mol %, about 85 mol %, about 90 mol %, about 92.9 mol %, about 93.3 mol %, about 95 mol %, about 96 mol %, about 96.4 mol %, about 98.4 mol %, or about 98.5 mol %, or less, of the polymer.


The first monomer may constitute about 50 wt %, or more, of the polymer, such as about 50 wt % to about 95 wt %, about 60 wt % to about 90 wt %, about 70 wt % to about 85 wt %, about 80 wt % to about 95 wt %, about 85 wt % to about 90 wt %, about 90 wt % to about 95 wt %, about 73 wt % to about 77 wt %, about 78 wt % to about 82 wt %, about 83 wt % to about 87 wt %, about 88 wt % to about 92 wt %, about 93 wt % to about 96 wt %, about 60 wt %, about 70 wt %, about 80 wt %, about 85 wt %, about 90 wt %, about 95 wt %, or about 96 wt %, or less, of the polymer.


The polymers disclosed herein may comprise a second monomer. The second monomer may comprise a sulfonated acid, a residue thereof, a carboxylic acid, or a residue thereof, that is chemically different than that of the first monomer. The sulfonated acid may include a sulfonated acid moiety, a salt thereof, or a conjugate base thereof. The sulfonated acid may include an amide moiety, such as in ATBS. Suitable sulfonated acids may include ATBS, sulfostyrene, vinylsulfonic acid, methallylsulfonic acid, a salt of the foregoing (e.g., sodium methallyl sulfonate or ATBS sodium salts), or a conjugate base of the foregoing (e.g., methallyl sulfonate).


The second monomer may constitute about 45 mol %, or less, of the polymer, such as about 0.01 mol % to about 45 mol %, about 1 mol % to about 40 mol %, about 20 mol % to about 30 mol %, about 0.01 mol % to about 15 mol %, about 0.01 mol % to about 10 mol %, about 0.01 mol % to about 5 mol %, about 2 mol % to about 4 mol %, about 1 mol % to about 5 mol %, about 5 mol % to about 15 mol %, about 10 mol % to about 15 mol %, about 5 mol % to about 10 mol %, about 18 mol % to about 22 mol %, about 13 mol % to about 17 mol %, about 8 mol % to about 12 mol %, about 3 mol % to about 7 mol %, about 2 mol %, about 3 mol %, about 3.6 mol %, about 3.7 mol %, about 4 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, less than about 20 mol %, or about 10 mol %, or less, of the polymer.


The second monomer may constitute about 50 wt %, or less, of the polymer, such as about 0.01 wt % to about 50 wt %, about 10 wt % to about 40 wt %, about 20 wt % to about 30 wt %, about 0.01 wt % to about 15 wt %, about 0.01 wt % to about 10 wt %, about 0.01 wt % to about 5 wt %, about 5 wt % to about 15 wt %, about 10 wt % to about 15 wt %, about 5 wt % to about 10 wt %, about 18 wt % to about 22 wt %, about 13 wt % to about 17 wt %, about 8 wt % to about 12 wt %, about 3 wt % to about 7 wt %, about 5 wt %, about 10 wt %, about 15 wt %, less than about 20 wt %, or about 10 wt %, or less, of the polymer.


In some embodiments, the second monomer of the polymer comprises one or more of MA, ATBS, sulfostyrene, methallylsulfonic acid, or residues thereof, where the second monomer is chemically different (e.g., chemically distinct) from the first monomer. In some embodiments, the polymer comprises AA and ATBS. The AA may constitute about 90 mol % to about 99 mol % (e.g., about 95 mol % to about 98.5 mol %) of the polymer and the ATBS may constitute at least a portion of the balance of the polymer. In certain embodiments, the polymer comprises MA and ATBS. The MA may constitute about 90 mol % to about 99 mol % (e.g., about 95 mol % to about 98.5 mol %) of the polymer and the ATBS may constitute at least a portion of the balance of the polymer. In some embodiments, the polymer comprises MAA and ATBS. The MAA may constitute about 90 mol % to about 99 mol % (e.g., about 95 mol % to about 98.5 mol %) of the polymer and the ATBS may constitute at least a portion of the balance of the polymer.


In some embodiments, the polymer comprises a first monomer including one of AA, MA, MAA, or residues thereof, and a second monomer including one of sulfostyrene, methallyl sulfonate, or residues thereof. For example, the first monomer may be AA or MA and the second monomer may be sulfostyrene. The AA, MA, or MAA may constitute about 90 mol % to about 99 mol % (e.g., about 95 mol % to about 98.5 mol %) of the polymer and the sulfostyrene or methallyl sulfonate may constitute at least a portion of the balance of the polymer.


The polymers disclosed herein may also include a third monomer. The third monomer may comprise a sulfonated acid or a residue thereof, a third, chemically different carboxylic acid (e.g., differing from the carboxylic acids of the first and second monomers), or an alkylated molecule or a residue thereof. The sulfonated acid (e.g., sulfonic acids) may include a sulfonate moiety, a salt thereof, or a conjugate base thereof. In an embodiment, each of the first, second, and third monomers are chemically different from each other. For example, the second monomer may include MA, the first monomer may include AA, and the third monomer may be chemically different from each of the first and second monomers.


In some embodiments, the alkylated molecule or residue thereof (e.g., alkylated acrylamide(s)) comprises at least one hydrophobic moiety such as an alkyl group of one or more carbons. Suitable alkylated molecules may include N-tert-butylacrylamide, N-isopropylacrylamide, butoxymethylacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, dimethylamino ethyl methacrylate acid salts (including, but not limited to, sulfuric acid and hydrochloride acid salts), N-vinylpyrrolidone, analogues of any of the foregoing, residues of any of the foregoing, or any other molecule suitable for radical polymerization and being at least substantially hydrophobic.


The third monomer may comprise one or more of any of the carboxylic acids or residues thereof disclosed above with respect to the first monomer and/or the second monomer, so long as the carboxylic acid of the third monomer is chemically different (e.g., a different chemical species) from the carboxylic acid of the first monomer and the second monomer. For example, the third monomer may comprise itaconic acid or crotonic acid, the first monomer may comprise AA, and the second monomer may comprise MA or MAA.


The third monomer may constitute about 10 mol %, or less, of the polymer, such as about 0.01 mol % to about 10 mol %, about 1 mol % to about 9 mol %, about 2 mol % to about 8 mol %, about 3 mol % to about 7 mol %, about 4 mol % to about 6 mol %, about 5 mol % to about 10 mol %, about 0.01 mol % to about 5 mol %, about 1 mol % to about 5 mol %, about 1 mol % to about 3 mol %, about 1.5 mol % to about 3.5 mol %, about 3 mol % to about 5 mol %, about 5 mol % to about 8 mol %, about 8 mol % to about 10 mol %, about 1.8 mol %, about 2 mol %, about 3 mol %, about 5 mol %, about 10 mol %, about 7 mol % or less, about 5 mol % or less, or about 3 mol %, or less, of the polymer.


The third monomer may constitute about 10 wt %, or less, of the polymer, such as about 0.01 wt % to about 10 wt %, about 1 wt % to about 9 wt %, about 2 wt % to about 8 wt %, about 3 wt % to about 7 wt %, about 4 wt % to about 6 wt %, about 5 wt % to about 10 wt %, about 0.01 wt % to about 5 wt %, about 1 wt % to about 5 wt %, about 3 wt % to about 5 wt %, about 5 wt % to about 8 wt %, about 8 wt % to about 10 wt %, about 5 wt %, about 10 wt %, about 7 wt % or less, or about 5 wt %, or less, of the polymer.


In some embodiments, the first monomer comprises one or more of AA, MA, MAA, or residues thereof, the second monomer comprises one or more of MA, MAA, ATBS, or residues thereof, and the third monomer comprises one or more of ATBS, sulfostyrene, methallylsulfonic acid, tert-butylacrylamide, dimethylacrylamide, itaconic acid, crotonic acid, or residues thereof, wherein the first, second, and third monomers are chemically different from each other.


In some embodiments, the AA residue may constitute about 90 mol % to about 98 mol % of the polymer, the MA residue may constitute about 1 mol % to about 7 mol % of the polymer, and the ATBS residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 7 mol %). The AA residue may constitute about 90 mol % to about 98 mol % of the polymer, the MAA residue may constitute about 1 mol % to about 7 mol % of the polymer, and the ATBS residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 7 mol %).


In some embodiments, the polymer comprises an AA residue, an ATBS residue, and an itaconic acid or crotonic acid residue. The AA residue may constitute about 90 mol % to about 98 mol % of the polymer, the ATBS residue may constitute about 1 mol % to about 7 mol % of the polymer, and the itaconic acid or crotonic residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 7 mol %).


In some embodiments, the polymer comprises an AA residue, ATBS residue, and tert-butylacrylamide residue. The AA residue may constitute about 90 mol % to about 98 mol % of the polymer, the ATBS residue may constitute about 1 mol % to about 7 mol % of the polymer, and the tert-butylacrylamide residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 7 mol %).


In some embodiments, the polymer comprises an AA residue, ATBS residue, and dimethyl acrylamide residue. The AA residue may constitute about 90 mol % to about 98 mol % of the polymer, the ATBS residue may constitute about 1 mol % to about 7 mol % of the polymer, and the dimethylacrylamide residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 7 mol %).


In some embodiments, the polymers disclosed herein may comprise a fourth monomer. The fourth monomer may comprise an alkylated molecule or a residue thereof, or a fourth carboxylic acid or a residue thereof (which is chemically different than the carboxylic acid or residue thereof of the first, second, and third monomers). In some embodiments, each of the first, second, third, and fourth monomers are chemically different from each other.


In some embodiments, the alkylated molecule of the fourth monomer comprises at least one alkyl moiety, a residue thereof, a salt thereof, or a conjugate base thereof. In additional embodiments, the fourth monomer comprises any of the carboxylic acids or residues thereof disclosed above with respect to the first, second, and/or third monomers, so long as the carboxylic acid of the fourth monomer is chemically different from the carboxylic acid of the first, second, and third monomers. For example, the fourth monomer may include itaconic acid or crotonic acid and one or more of the first, second, and third monomers may include or consist of AA, MA, and/or MAA.


The fourth monomer may constitute about 10 mol %, or less, of the polymer, such as about 0.01 mol % to about 10 mol %, 0.01 mol % to about 5 mol %, about 1 mol % to about 7 mol %, about 2 mol % to about 6 mol %, about 3 mol % to about 5 mol %, about 1 mol % to about 4 mol %, about 1 mol % to about 3 mol %, about 1.5 mol % to about 3 mol %, about 4 mol % to about 6 mol %, about 5 mol % to about 10 mol %, about 1 mol % to about 5 mol %, about 3 mol % to about 5 mol %, about 5 mol % to about 8 mol %, about 8 mol % to about 10 mol %, about 5 mol %, about 10 mol %, about 7 mol % or less, about 5 mol % or less, or about 3 mol %, or less, of the polymer.


The fourth monomer may constitute about 10 wt %, or less, of the polymer, such as about 0.01 wt % to about 10 wt %, 0.01 wt % to about 5 wt %, about 1 wt % to about 9 wt %, about 2 wt % to about 8 wt %, about 3 wt % to about 7 wt %, about 4 wt % to about 6 wt %, about 5 wt % to about 10 wt %, about 1 wt % to about 5 wt %, about 3 wt % to about 5 wt %, about 5 wt % to about 8 wt %, about 8 wt % to about 10 wt %, about 5 wt %, about 10 wt %, about 7 wt % or less, or about 5 wt %, or less, of the polymer.


In some embodiments, the first monomer of the polymer comprises one of AA, MA, MAA, or residues thereof. The second monomer of the polymer comprises one of MA, MAA, ATBS, or residues thereof, where the second monomer is chemically different from the first monomer. The third monomer of the polymer comprises one of ATBS, sulfostyrene, methallylsulfonic acid, tert-butylacrylamide, dimethylacrylamide, itaconic acid, crotonic acid or residues thereof, where the third monomer is chemically different from the second monomer and the first monomer. The fourth monomer of the polymer comprises a member selected from the group consisting of tert-butylacrylamide, dimethylacrylamide, itaconic acid, crotonic acid, or residues thereof, where the fourth monomer is chemically different from the first, second, and third monomers.


In some embodiments, the polymer comprises AA, MA, ATBS, and tert-butylacrylamide residue. The AA residue may constitute about 85 mol % to about 95 mol % of the polymer, the MA residue may constitute about 1 mol % to about 7 mol % of the polymer, the ATBS residue may constitute about 1 mol % to about 7 mol % of the polymer, and the tert-butylacrylamide residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 7 mol %). The AA residue may constitute about 93 mol % of the polymer, the MA residue may constitute about 2 mol % of the polymer, the ATBS residue may constitute about 3.5 mol % of the polymer, and the tert-butylacrylamide residue may constitute about 1.5 mol % of the polymer.


In some embodiments, the polymer comprises AA, ATBS, itaconic acid or crotonic acid, and tert-butylacrylamide. The AA residue may constitute about 80 mol % to about 95 mol % of the polymer, the ATBS residue may constitute about 1 mol % to about 7 mol % of the polymer, the itaconic acid or crotonic acid residue may constitute about 1 mol % to about 7 mol % of the polymer, and the tert-butylacrylamide residue may constitute about 1 mol % to about 7 mol % of the polymer. MA or MAA may be used in place of the AA, where the MA is chemically different from each of the other monomers in the polymer.


In some embodiments, the polymers disclosed herein may comprise a fifth monomer. The fifth monomer may comprise, for example, a carboxylic acid, or a residue thereof, that is chemically different than the carboxylic acid, or residue thereof, of the other monomers in the polymer. In some embodiments, each of the first, second, third, fourth, and fifth monomers are chemically different from each other.


The carboxylic acid of the fifth monomer may be any of the carboxylic acids (or residues thereof) disclosed in connection with the first, second, third, and/or fourth monomers, so long as the carboxylic acid of the fifth monomer is chemically different from the carboxylic acid of the first monomer, second monomer, third monomer, and/or fourth monomer. For example, the fifth monomer may comprise MAA and one or more of the first, second, third, and/or fourth monomers may comprise or consist of AA, MA, itaconic acid, or crotonic acid.


The fifth monomer may constitute about 10 mol %, or less, of the polymer, such as about 0.01 mol % to about 10 mol %, 0.01 mol % to about 5 mol %, about 1 mol % to about 7 mol %, about 2 mol % to about 6 mol %, about 1 mol % to about 3 mol %, about 3 mol % to about 5 mol %, about 4 mol % to about 6 mol %, about 5 mol % to about 10 mol %, about 1 mol % to about 5 mol %, about 6 mol % to about 8 mol %, about 1 mol %, about 1.5 mol %, about 2 mol %, about 2.5 mol %, about 3 mol %, about 3.5 mol %, about 4 mol %, about 5 mol %, about 7 mol %, about 10 mol %, about 8 mol % or less, about 5 mol % or less, or about 3 mol %, or less, of the polymer.


The fifth monomer may constitute about 10 wt %, or less, of the polymer, such as about 0.01 wt % to about 10 wt %, 0.01 wt % to about 5 wt %, about 1 wt % to about 9 wt %, about 2 wt % to about 8 wt %, about 3 wt % to about 7 wt %, about 4 wt % to about 6 wt %, about 5 wt % to about 10 wt %, about 1 wt % to about 5 wt %, about 3 wt % to about 5 wt %, about 6 wt % to about 8 wt %, about 3 wt %, about 5 wt %, about 7 wt %, about 10 wt %, about 8 wt % or less, or about 7 wt %, or less, of the polymer.


In some embodiments, a sulfonated acid may be used in place of any of the above listed second, third, fourth, and/or fifth monomers in the polymer. For example, ATBS may be used instead of the second carboxylic acid of the second monomer. The sulfonated acid may be present in the same mol % or wt % as the respective monomer it replaces. For example, if ATBS were used in place of the second carboxylic acid, the ATBS may be present in the same mol % or wt % as the second carboxylic acid of the second monomer.


In some embodiments, the polymer comprises an AA residue, MA residue, tert-butylacrylamide residue, itaconic acid or crotonic acid residue, and MAA residue. The AA residue may constitute about 80 mol % to about 96 mol % of the polymer, the MA residue may constitute about 1 mol % to about 7 mol % of the polymer, the tert-butylacrylamide residue may constitute about 1 mol % to about 7 mol % of the polymer, the itaconic acid or crotonic acid residue may constitute about 1 mol % to about 5 mol % of the polymer, and the MAA residue may constitute at least a portion of the balance of the polymer (e.g., about 1 mol % to about 10 mol %). In some embodiments, the AA residue constitutes about 90 mol % of the polymer, the MA residue constitutes about 3 mol % of the polymer, the tert-butylacrylamide residue constitutes about 1.5 mol % of the polymer, the itaconic acid or crotonic acid residue constitutes about 2 mol % of the polymer, and the MAA residue constitutes about 3.5 mol % of the polymer.


As discussed below, the polymers disclosed herein can exhibit a wide range of molecular weights. They can be mixed with water in a wide range of dosages. The polymers may also comprise a fluorescent tag/marker. In some embodiments, the polymers disclosed herein may exclude phosphorous or phosphorous-containing moieties. The polymers may be formed in a liquid, semi-liquid (e.g., gel), or solid form, depending on the specific polymer, monomeric make-up, and/or molecular weight thereof.


The polymer solutions disclosed herein may exhibit a viscosity of about 100-200 cps as measured by a Brookfield viscometer at 25 degrees Celsius with a #3 spindle at 30 rpm. The viscosity of any of the polymer compositions disclosed herein, prior to mixing in water and/or a water source, may be about 250 cps or less, such as about 50 cps to about 250 cps, about 100 cps to about 200 cps, about 120 cps to about 180 cps, about 140 cps, to about 160 cps, about 80 cps to about 120 cps, about 120 cps to about 150 cps, about 150 cps to about 180 cps, or about 180 cps to about 200 cps.


The molecular weight (Mw) of any of the polymers disclosed herein, prior to mixing in water and/or a water source, may be at least about 500 g/mol, such as about 500 g/mol to about 50,000 g/mol, about 1000 g/mol to about 20,000 g/mol, about 2,000 g/mol to about 12,000 g/mol, about 500 g/mol to about 3,000 g/mol, about 2,000 g/mol to about 8,000 g/mol, about 3,000 g/mol to about 6,000 g/mol, about 6,000 g/mol to about 9,000 g/mol, about 8,000 g/mol to about 10,000 g/mol, about 9,000 g/mol to about 12,000 g/mol, about 8,000 g/mol to about 15,000 g/mol, about 12,000 g/mol to about 15,000 g/mol, about 15,000 g/mol to about 20,000 g/mol, about 18,000 g/mol to about 22,000 g/mol, 15,000 g/mol to about 25,000 g/mol, about 20,000 g/mol to about 30,000 g/mol, about 30,000 g/mol to about 40,000 g/mol, about 40,000 g/mol to about 50,000 g/mol, or about 1,000 g/mol, about 2,000 g/mol, about 3,000 g/mol, about 4,000 g/mol, about 5,000 g/mol, about 7,000 g/mol, about 10,000 g/mol, about 11,000 g/mol, about 12,000 g/mol, about 14,000 g/mol, about 15,000 g/mol, about 18,000 g/mol, about 20,000 g/mol, about 22,000 g/mol, about 25,000 g/mol or less, or about 30,000 g/mol or less.


In some embodiments, the polymers disclosed herein may comprise a tagging agent. The base polymers (or any monomer thereof) may be polymerized with a tagging agent and the resulting polymer may be monitored fluorescently, for example. The tagging agent can be polymerized with any of the monomers/polymers disclosed herein. Suitable tagging agents may include one or more monomers that are naphthalene-containing, anthracene-containing, quinoline-containing, isoquinoline-containing, indole-containing, pyrene-containing, benzimidazole-containing, coumarin-containing, fluorescein-containing, quinoxaline-containing, xanthylium-containing, boron-dipyrromethene-containing, bimane-containing, rhodamine-containing, or naphthalimide-containing. Specific monomers that can be used to fluorescently tag a polymer include but are not limited to 4-methoxy-N-(3-N′,N′-dimethylaminopropyl)naphthalimide (quaternary salt), N-allyl-4-(2-N′,N′-dimethylaminoethoxy)naphthalimide (methyl sulfate quaternary salt), 4-methoxy-N-(3-N′,N′-dimethylam inopropyl) naphthalimide (allyl chloride quaternary salt), 5-allyloxy-4′-carboxy-1,8-naphthoylene-1′,2′-benzimidazole, 6-Vinylbenzyloxy-4′-carboxy-1,8-naphthoylene-1′2′-benzimidazole, 4-methoxy-N-(3-N′,N′-dimethylaminopropyl)naphthalimide (2-hydroxy-3-allyloxypropyl quat), quaternary ammonium salt of dimethylaminopropylmethacrylamide and 2-(chloromethyl)quinoline, quaternary ammonium salt of dimethylaminopropylmethacrylamide and 9-(chloromethyl)anthracene, quaternary ammonium salt of dimethylaminopropylmethacrylamide and 2-(chloromethyl)benzimidazole, quaternary ammonium salt of dimethylaminopropylmethacrylamide and 4-(bromomethyl)pyrene, quaternary ammonium salt of dimethylaminopropylmethacrylamide and 1-(chloromethyl)naphthalene, any additional quaternary ammonium salt of dimethylaminopropylmethacrylamide and halo-alkyl derivative of the fluorescent chromophores previously listed, or any other fluorescent molecule capable of polymerizing with any of the monomers and/or polymers disclosed herein.


The tagging agent may constitute less than about 10 mol % of any of the polymers disclosed herein, such as less than about 1 mol %, less than about 0.1 mol %, or less than about 0.01 mol % of the polymer. The tagging agent may constitute less than about 10 wt % of the any of the polymers disclosed herein, such as about 0.01 wt % to about 10 wt %, about 1 wt % to about 3 wt %, about 4 wt % to about 6 wt %, about 7 wt % to about 10 wt %, 2 wt % to about 5 wt %, less than about 5 wt %, less than about 3 wt %, less than about 1 wt %, about 0.01 wt % to about 1 wt %, about 0.01 wt % to about 0.1 wt %, or less than about 0.1 wt % of the polymer.


When the polymers herein are tagged with a tagging agent, one can determine how much polymer composition is being delivered in the water source and/or how much polymer composition is being exhausted during use. A fluorometer, UV spectrometer, or other fluorescent material detecting apparatus may be used to determine the amount of fluorescent tag in a water source, and by extension, the amount of tagged polymer therein. Such equipment can be used to constantly monitor the concentration of a tagged polymer in a system or can be used to monitor said concentrations on demand (e.g., randomly or at selected intervals).


In some embodiments, the polymers disclosed herein may include additional monomers. Additional monomers may include hydrogen bonding or cationic monomers. For example, a polymer may additionally include a monomer or residue formed from a hydrogen bonding molecule and/or a cationic molecule. Suitable hydrogen bonding molecules include, by way of example, acrylamide, methacrylamide, N-vinyl formamide, methylene bis acrylamide, triallylamine and acid salts thereof, ethylene glycol dimethacrylate, hydroxymethylacrylate, hydroxyethylacrylate, hydroxypropylacrylate, hydroxypropylmethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethylacrylate, polyethylene glycol dimethacrylate, glycidyl methacrylate, vinyl alcohol, vinyl acetate, derivatives of any of the foregoing, salts of any of the foregoing, or analogues of any of the foregoing. Suitable cationic molecules include, by way of example, dimethylaminoethyl acrylate methyl chloride tetranary salts, dimethylaminoethyl acrylate benzyl chloride tetranary salts, dimethylaminoethyl acrylate methyl sulfate tetranary salt, dimethylaminoethyl methacrylate methyl sulfate tetranary salt, dimethylaminoethyl acrylamide methyl sulfate tetranary salts, dimethylaminopropyl acrylamide methyl sulfate tetranary salts, dimethylaminopropyl methacrylamide methyl sulfate tetranary salts, diallyldimethyl ammonium chloride, dimethylaminoethyl methacrylate methyl chloride tetranary salt, dimethylaminoethyl methacrylate benzyl chloride tetranary salt, methacrylamidopropyl trimethyl ammonium chloride, acrylamidopropyl trimethyl ammonium chloride, dissociated species of any of the foregoing, or analogues of any of the foregoing.


In some embodiments, any of the above listed species may be used to supply a polymerized monomer having a desired moiety (e.g., carboxylate groups) to the polymer composition. One or more of the above additional monomer species may be used in place of, or in addition to, any of the first, second, third, fourth, and/or fifth monomers disclosed herein. The additional monomers may be about 5 mol %, or less, of the polymer composition, such as 4 mol % or less, 3 mol %, or less, 2 mol % or less, or about 0.01 mol % to about 5 mol %, or more than about 1 mol % of the polymer composition including the same.


In some embodiments, the polymers disclosed herein may be mixed in water and/or a water source to result in a rheology-modifying agent. For example, any of the polymers disclosed herein may be dispersed in water (e.g., tap or deionized water) and then may be mixed in a water source. The polymers may be mixed directly into a water source. The polymers may be delivered to a water source in powder form or mixed in water, and then may be mixed into the water source. Any of the polymers disclosed herein may be emulsified in a water source. The polymers may be mixed into water and/or a water source by one or more of batch-wise, continuous (e.g., drip feed), or incremental addition(s) of the polymer.


The polymers of the rheology-modifying agents may be added to a slurry in any amount effective to modify the rheology of the slurry. For example, a polymer may be added at a dosage of about 0.01 ppm or more, such as about 0.01 ppm to about 1000 ppm, about 0.05 ppm to about 200 ppm, about 0.1 ppm to about 100 ppm, about 0.2 ppm to about 50 ppm, about 0.01 ppm to about 1 ppm, about 1 ppm to about 5 ppm, about 5 ppm to about 10 ppm, about 10 ppm to about 20 ppm, about 10 ppm to about 300 ppm, about 20 ppm to about 30 ppm, about 30 ppm to about 40 ppm, about 40 ppm to about 50 ppm, about 50 ppm to about 80 ppm, about 80 ppm to about 100 ppm, about 100 ppm to about 200 ppm, about 200 ppm to about 500 ppm, about 0.01 ppm to about 10 ppm, about 0.1 ppm to about 20 ppm, or about 0.5 ppm to about 10 ppm.


The dosage may be more than about 0.01 ppm and less than about 300 ppm, such as less than about 200 ppm, less than about 100 ppm, less than about 50 ppm, less than about 20 ppm, less than about 10 ppm, or less than about 5 ppm. The rheology-modifying agent may be added to a slurry continuously or fed batch-wise.


The amount of the rheology-modifying agent to be added to the slurry depends at least upon the amount of lime (or magnesium hydroxide) in the slurry. For example, a certain dosage of the rheology-modifying agent may be added to a 10% lime slurry and a different dosage could be added to a 30% lime slurry.


The rheology-modifying agent may be added to any process incorporating lime and/or magnesium hydroxide slurries. Such processes can include processes incorporating warm lime softeners, hot lime softeners, or any other process where hard water ions are being removed from water. Also, the rheology-modifying agent can be added to processes utilizing heat exchangers, evaporators, and boilers, such as hydrocarbon production processes and power generation processes. Further, the rheology-modifying agent can be added to scrubbers to assist with the scrubbing of acid gasses, such as SO2, H2S, and CO2.


In one aspect, a method of modifying the rheology of a lime slurry is disclosed. The method can include the steps of providing a lime slurry and adding a rheology-modifying agent to the lime slurry. The lime slurry can be stored in a storage device. The rheology-modifying agent can be added into the slurry in the storage device. In certain aspects, the rheology-modifying agent comprises one or more of the polymers disclosed herein and optionally water.


In certain hydrocarbon production processes, a pond or similar water storage device is provided to store water (hereinafter “production water”) to be used in connection with recovering hydrocarbons. This production water can come from many different sources and generally is not purified. Thus, the production water can contain high amounts of silica. The production water is fed into a warm lime softener to remove contaminants, such as silica. In certain operations, lime slurries and/or magnesium hydroxide slurries are also fed into the warm lime softener. The lime and/or magnesium hydroxide slurries assist in silica removal. For example, the silica is able to precipitate onto the magnesium hydroxide or lime. In certain situations, the pH of the medium inside of the warm lime softener is raised to facilitate silica precipitation. The precipitate is then separated from the water and the water can be fed from the warm lime softener to the next piece of equipment, such as the heat exchanger or the steam generator.


However, as previously mentioned, although lime slurries and magnesium hydroxide slurries provide the benefit of facilitating silica removal from the production water, the slurries can also form deposits on the feed lines used to feed the slurries into the warm lime softener. In certain aspects, a storage device is provided near the warm lime softener. The storage device can contain the lime slurry. In other aspects, a storage device is provided near the warm lime softener. The storage device can contain the magnesium hydroxide slurry. In further aspects, two or more storage devices are provided near the warm lime softener. At least one of the storage devices contains the lime slurry and at least one of the storage devices contains a magnesium hydroxide slurry. Feed lines connect the lime slurry and magnesium hydroxide slurry storage devices to the warm lime softener. Additionally, the feed lines are used to transport the lime slurry and magnesium hydroxide slurry from their respective storage devices to the warm lime softener. As discussed above, these feed lines will become fouled with lime and/or magnesium-containing deposits and after about one week to one month, the entire operation will need to be shut down and the feed lines will need to be cleaned. However, if any of the aforementioned rheology-modifying agents are added to the lime slurry and/or the magnesium hydroxide slurry, feed line deposits will not occur or they will be greatly reduced.


The processes contemplated by the present application can incorporate lime slurries and/or magnesium hydroxide slurries. In some embodiments, the rheology-modifying agents may be used in connection with a magnesium oxide slurry in the same manner that they are used in connection with magnesium hydroxide slurries.


In one or more embodiments, a method of modifying the rheology of a magnesium hydroxide slurry is disclosed. The method includes the steps of providing a magnesium hydroxide slurry and adding a rheology-modifying agent to the magnesium hydroxide slurry. The magnesium hydroxide slurry can be stored in a storage device. The rheology-modifying agent can be added into the slurry in the storage device. The rheology-modifying agent may comprise one or more of the polymers disclosed herein.


EXAMPLES

An experiment was conducted to determine the effectiveness of a rheology-modifying agent. The rheology-modifying agent comprised a polymer. The polymer comprised about 85 weight % AA, about 10 weight % ATBS, about 3 weight % itaconic acid, and about 2 weight % tert-butyl acrylamide. The polymer had a weight average molecular weight of about 14,000 g/mol.


A lime slurry was prepared (35% w/w) and the rheology-modifying agent was added thereto at a concentration of about 1%. The viscosity of the slurry was determined to be about 425 cps at 20 rpm using the Brookfield LV-DV III model and Spindle #3. The viscosity of the same slurry without the rheology-modifying agent was 2951 cps at 20 rpm.


As used herein, the term “molecular weight” refers to the weight average molecular weight (Mw).


As used herein, the term “chemically different” refers to chemical species having a different number of carbon atoms and/or different functionalities (e.g., moieties) from another species; different isomers; or two or more such differences. For the purposes of this disclosure, an acid, an ion, a conjugate base, or a salt of a chemical species is not considered chemically different from the chemical species.


The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not necessarily but may preclude the possibility of additional acts or structures. The singular forms “a,” “and,” and “the” include plural references unless the context clearly dictates otherwise.


The present disclosure also contemplates other embodiments “comprising,” “consisting of,” and “consisting essentially of,” the embodiments or elements presented herein, whether explicitly set forth or not. Generally, and as determined by context, the term “comprise” or “comprises” used in the specification, may be interpreted to mean any of “comprising,” “consisting of,” or “consisting essentially of.”


The terms “consisting essentially of” or “consist essentially of” mean that the methods and compositions may include additional steps, components, ingredients or the like, but only if the additional steps, components and/or ingredients do not materially alter the basic and novel characteristics of the claimed methods and compositions.


The term “about,” which modifies, for example, the quantity of an ingredient in a composition, concentration, volume, process temperature, process time, yield, flow rate, pressure, and like values, and ranges thereof, employed in describing the embodiments of the disclosure, refers to variation in the numerical quantity that can occur, for example, through typical measuring and handling procedures used for making compounds, compositions, concentrates or use formulations; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of starting materials or ingredients used to carry out the methods, and like considerations. The term “about” also encompasses amounts that differ due to aging of a formulation with a particular initial concentration or mixture, and amounts that differ due to mixing or processing a formulation with a particular initial concentration or mixture. Where modified by the term “about,” the claims appended hereto include equivalents to these quantities.


As used herein, the term “substantially,” which modifies, for example, the type or quantity of an ingredient in a composition, a property, a measurable quantity, a method, a position, a value, or a range, employed in describing the embodiments of the disclosure, refers to a variation that does not affect the overall recited composition, property, quantity, method, position, value, or range thereof in a manner that negates an intended composition, property, quantity, method, position, value, or range. Examples of intended properties include, solely by way of non-limiting examples thereof, flexibility, partition coefficient, rate, solubility, temperature, and the like; intended values include thickness, yield, weight, concentration, and the like. The effect on methods that are modified by “substantially” include the effects caused by variations in type or amount of materials used in a process, variability in machine settings, the effects of ambient conditions on a process, and the like wherein the manner or degree of the effect does not negate one or more intended properties or results; and like considerations. Where modified by the term “substantially,” the claims appended hereto include equivalents to these types and amounts of materials.


All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated. In addition, unless expressly stated to the contrary, use of the term “a” is intended to include “at least one” or “one or more.” For example, “a polymer” is intended to include “at least one polymer” or “one or more polymers.”


Any ranges given either in absolute terms or in approximate terms are intended to encompass both, and any definitions used herein are intended to be clarifying and not limiting. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges (including all fractional and whole values) subsumed therein.


Furthermore, the invention encompasses any and all possible combinations of some or all of the various embodiments described herein. It should also be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. A method of modifying the rheology of a slurry, comprising: adding a rheology-modifying agent to the slurry, the rheology-modifying agent comprising a polymer,wherein the slurry comprises magnesium hydroxide or lime,wherein the polymer comprises about 85 weight % acrylic acid (AA), about 10 weight % 2-acrylamido-2-methylpropane sulfonic acid (ATBS), about 3 weight % itaconic acid, and about 2 weight % tert-butyl acrylamide.
  • 2. The method of claim 1, wherein the rheology-modifying agent comprises sodium carbonate.
  • 3. The method of claim 1, wherein the rheology-modifying agent excludes phosphorous.
  • 4. The method of claim 1, wherein the polymer comprises a weight average molecular weight of about 500 g/mol to about 30,000 g/mol.
  • 5. The method of claim 1, wherein the polymer comprises a tagging agent.
  • 6. A method of modifying the rheology of a slurry, comprising: adding a rheology-modifying agent to the slurry, the rheology-modifying agent comprising a polymer,wherein the slurry comprises magnesium hydroxide or lime,wherein the polymer comprises about 85 weight % AA, about 10 weight % ATBS, about 3 weight % itaconic acid, and about 2 weight % tert-butyl acrylamide.
  • 7. The method of claim 6, wherein the rheology-modifying agent comprises sodium carbonate.
  • 8. The method of claim 6, wherein the rheology-modifying agent excludes phosphorous.
  • 9. A method of modifying the rheology of a slurry, comprising: adding a rheology-modifying agent to the slurry, the rheology-modifying agent comprising a polymer,wherein the slurry comprises magnesium hydroxide or lime,wherein the polymer comprises about 60 to about 90 weight % of a first monomer selected from the group consisting of: AA, methacrylic acid, maleic acid, and maleic anhydride; about 5 to about 15 weight % of a second monomer selected from the group consisting of: ATBS, sulfostyrene, vinylsulfonic acid, methallylsulfonic acid, a salt of any of the foregoing acids, and a conjugate base of any of the foregoing acids; about 0.01 to about 10 weight % of a third monomer selected from the group consisting of: itaconic acid, and crontonic acid; and about 0.01 to about 10 weight % of a fourth monomer selected from the group consisting of: tert-butyl acrylamide and dimethylacrylamide.
  • 10. The method of claim 9, wherein the rheology-modifying agent comprises sodium carbonate.
  • 11. The method of claim 9, wherein the rheology-modifying agent excludes phosphorous.
  • 12. The method of claim 9, wherein the first monomer is AA, the second monomer is ATBS, the third monomer is itaconic acid, and the fourth monomer is tert-butyl acrylamide.
  • 13. The method of claim 9, wherein the polymer comprises about 85 weight % of the first monomer, about 10 weight % of the second monomer, about 3 weight % of the third monomer, and about 2 weight % of the fourth monomer.
  • 14. The method of claim 9, wherein the polymer comprises about 85 weight % of the first monomer, and the first monomer is AA.
  • 15. The method of claim 9, wherein the polymer comprises about 10 weight % of the second monomer, and the second monomer is ATBS.
  • 16. The method of claim 9, wherein the polymer comprises about 3 weight % of the third monomer, and the third monomer is itaconic acid.
  • 17. The method of claim 9, wherein the polymer comprises about 2 weight % of the fourth monomer, and the fourth monomer is tert-butyl acrylamide.
  • 18. The method of claim 9, wherein the polymer comprises a weight average molecular weight of about 500 g/mol to about 30,000 g/mol.
  • 19. The method of claim 9, wherein the polymer comprises a tagging agent.
US Referenced Citations (189)
Number Name Date Kind
2178139 Epstein et al. Oct 1939 A
2202601 Ried May 1940 A
3793299 Zimmerer Feb 1974 A
4230610 Falcione et al. Oct 1980 A
4374702 Turbak et al. Feb 1983 A
4385961 Svending et al. May 1983 A
4388150 Sunden et al. Jun 1983 A
4636379 Bestek et al. Jan 1987 A
4711727 Matthews et al. Dec 1987 A
4743396 Fong et al. May 1988 A
4753710 Langley et al. Jun 1988 A
4783314 Hoots et al. Nov 1988 A
4889653 Ahmed et al. Dec 1989 A
4913775 Langley et al. Apr 1990 A
4966652 Wasser Oct 1990 A
4992380 Moriarty et al. Feb 1991 A
5082639 Lee et al. Jan 1992 A
5098520 Begala Mar 1992 A
5116417 Walker, Jr. et al. May 1992 A
5167776 Bhaskar et al. Dec 1992 A
5171450 Hoots Dec 1992 A
5182062 Lee et al. Jan 1993 A
5228808 McKennon et al. Jul 1993 A
5254221 Lowry et al. Oct 1993 A
5264009 Khan Nov 1993 A
5274055 Honig et al. Dec 1993 A
5306475 Fichtel et al. Apr 1994 A
5310498 Lee et al. May 1994 A
5332436 Walker, Jr. et al. Jul 1994 A
5336022 McKennon et al. Aug 1994 A
5346589 Braunstein et al. Sep 1994 A
5350596 Walker, Jr. Sep 1994 A
5352647 Suchenwirth Oct 1994 A
5399048 Walker Mar 1995 A
5409605 Haley et al. Apr 1995 A
5419839 Haley et al. May 1995 A
5492685 Moran et al. Feb 1996 A
5502021 Schuster Mar 1996 A
5507572 Shields et al. Apr 1996 A
5512093 Huege et al. Apr 1996 A
5544971 Huege et al. Aug 1996 A
5589107 Scheurman, III Dec 1996 A
5616283 Huege et al. Apr 1997 A
5618508 Suchenwirth et al. Apr 1997 A
5620744 Huege et al. Apr 1997 A
5628261 Beckstead et al. May 1997 A
5702247 Schoof Dec 1997 A
5714118 Scheurman, III Feb 1998 A
5746819 Kostelnik et al. May 1998 A
5792440 Huege Aug 1998 A
5840158 Choo et al. Nov 1998 A
5876698 Webeling et al. Mar 1999 A
5877247 Mahar Mar 1999 A
5939036 Porter et al. Aug 1999 A
5951751 Williams et al. Sep 1999 A
5994443 Ehrat et al. Nov 1999 A
6027558 Little et al. Feb 2000 A
6059974 Scheurman, III May 2000 A
6071379 Wong Shing et al. Jun 2000 A
6090878 Ehrat et al. Jul 2000 A
6296761 Scheurman, III Oct 2001 B1
6344511 Ehrat et al. Feb 2002 B1
6361604 Pendleton et al. Mar 2002 B2
6361652 Keiser et al. Mar 2002 B2
6361653 Keiser et al. Mar 2002 B2
6372805 Keiser et al. Apr 2002 B1
6379753 Soane et al. Apr 2002 B1
6395205 Huege et al. May 2002 B1
6395813 Duccini et al. May 2002 B1
6412974 Scholl et al. Jul 2002 B1
6436878 Wang et al. Aug 2002 B1
6486216 Keiser et al. Nov 2002 B1
6592718 Wong Shing et al. Jul 2003 B1
6605674 Whipple et al. Aug 2003 B1
6926879 Huege et al. Aug 2005 B2
6939523 D'Alesandro Sep 2005 B2
7047134 Berger et al. May 2006 B2
7105114 Huege et al. Sep 2006 B2
7125469 Barcus et al. Oct 2006 B2
7202197 Huege et al. Apr 2007 B2
7326400 Huege Feb 2008 B2
7338649 Huege et al. Mar 2008 B2
7377773 Nolan et al. May 2008 B2
7378073 de Pauw Gerlings May 2008 B2
7470739 Gane et al. Dec 2008 B2
7473334 Wong Shing et al. Jan 2009 B2
7497924 Nguyen et al. Mar 2009 B2
7514488 Gane et al. Apr 2009 B2
7615135 Harrington et al. Nov 2009 B2
7641776 Nagar et al. Jan 2010 B2
7691190 Ingram et al. Apr 2010 B2
7691346 Curtis et al. Apr 2010 B2
7718085 Scheurman, III May 2010 B1
7829738 Brammer, Jr. et al. Nov 2010 B1
7897062 Scheurman, III Mar 2011 B1
7955504 Jovanovic et al. Jun 2011 B1
7993451 Brouillette et al. Aug 2011 B2
7995504 Ransom et al. Aug 2011 B2
8012758 Enzien et al. Sep 2011 B2
8021518 Furman et al. Sep 2011 B2
8066847 Grigoriev et al. Nov 2011 B2
8067629 Tong Nov 2011 B2
8071667 Furman, Jr. et al. Dec 2011 B2
8082649 Rider Dec 2011 B2
8088213 Cheng et al. Jan 2012 B2
8092618 Sharpe et al. Jan 2012 B2
8092649 Shevchenko et al. Jan 2012 B2
8097687 Kurian et al. Jan 2012 B2
8101045 Furman et al. Jan 2012 B2
8123042 Tran Feb 2012 B2
8172983 Cheng et al. May 2012 B2
8206680 Chavez et al. Jun 2012 B2
8242287 Schertzer et al. Aug 2012 B2
8246780 Duggirala et al. Aug 2012 B2
8247593 Morrison et al. Aug 2012 B2
8247597 Fair et al. Aug 2012 B2
8258208 Kurian et al. Sep 2012 B2
8262852 Duggirala et al. Sep 2012 B2
8262858 Duggirala et al. Sep 2012 B2
8288835 Quevy et al. Oct 2012 B2
8298439 Blubaugh et al. Oct 2012 B2
8298508 Wang et al. Oct 2012 B2
8302778 Tran Nov 2012 B2
8366877 Duggirala et al. Feb 2013 B2
8382947 Skaggs et al. Feb 2013 B2
8382950 Cheng Feb 2013 B2
8398901 Beck et al. Mar 2013 B2
8414739 Kimura et al. Apr 2013 B2
8430956 Brouillette et al. Apr 2013 B2
8440052 Duggirala et al. May 2013 B2
8440163 Gross-Lorgouilloux et al. May 2013 B2
8444812 Grigoriev et al. May 2013 B2
8465623 Zhao et al. Jun 2013 B2
8714809 Brouillette et al. May 2014 B2
8945345 Laine et al. Feb 2015 B2
9034145 Castro et al. May 2015 B2
9309151 Scheurman, III Apr 2016 B2
9511340 Laurent Dec 2016 B2
20010045186 Pendleton et al. Nov 2001 A1
20030121457 Butters Jul 2003 A1
20030207101 Huege et al. Nov 2003 A1
20040109807 D'Alesandro Jun 2004 A1
20040129175 Butters et al. Jul 2004 A1
20040191163 Huege Sep 2004 A1
20040208809 D'Alesandro Oct 2004 A1
20040258612 Huege et al. Dec 2004 A1
20050025659 Godfrey et al. Feb 2005 A1
20050205839 Kawakatsu Sep 2005 A1
20050216195 Berger et al. Sep 2005 A1
20050287055 Huege et al. Dec 2005 A1
20060032327 Huege et al. Feb 2006 A1
20060144535 Nguyen et al. Jul 2006 A1
20060275203 Chavez et al. Dec 2006 A1
20070036701 Huege Feb 2007 A1
20070036702 Huege Feb 2007 A1
20070098610 Ingram et al. May 2007 A1
20070104630 Huege May 2007 A1
20080032247 Nolan et al. Feb 2008 A1
20080206126 Benson et al. Aug 2008 A1
20080265222 Ozersky et al. Oct 2008 A1
20080317649 Curtis et al. Dec 2008 A1
20090145987 Gane et al. Jun 2009 A1
20090173692 Laraway et al. Jul 2009 A1
20100305007 Spindler et al. Dec 2010 A1
20100313619 Biotteau et al. Dec 2010 A1
20110011305 Maijala et al. Jan 2011 A1
20110182990 Su et al. Jul 2011 A1
20110196094 Hamad et al. Aug 2011 A1
20110250341 Keiser et al. Oct 2011 A1
20110277947 Hua et al. Nov 2011 A1
20110293932 Jiang et al. Dec 2011 A1
20130000855 Nuopponen et al. Jan 2013 A1
20130129658 Nguyen-Kim May 2013 A1
20130139856 Vinson et al. Jun 2013 A1
20130146099 Monsrud et al. Jun 2013 A1
20130146102 Monsrud et al. Jun 2013 A1
20130146425 Tokhtuev Jun 2013 A1
20130187087 Scheurman, III Jul 2013 A1
20130213264 Hein et al. Aug 2013 A1
20130233550 Brothers et al. Sep 2013 A1
20140048267 Pisklak et al. Feb 2014 A1
20140083416 Nuopponen et al. Mar 2014 A1
20140140907 Belli et al. May 2014 A1
20140196632 Brouillette et al. Jul 2014 A1
20140301966 Hough Oct 2014 A1
20140326675 Gill Nov 2014 A1
20150041091 Castro et al. Feb 2015 A1
20150072902 Lafitte et al. Mar 2015 A1
20150184078 Lorgouilloux et al. Jul 2015 A1
Foreign Referenced Citations (161)
Number Date Country
215514 Apr 2002 AT
244064 Jul 2003 AT
296685 Jun 2005 AT
645231 Jan 1994 AU
1006309 Jul 1994 BE
PI9300971 Nov 1994 BR
PI0714801 Sep 2013 BR
2055925 May 1992 CA
2131793 Sep 1993 CA
2229020 Mar 1997 CA
2232302 Mar 1997 CA
2261115 Jan 1998 CA
2203210 Oct 1998 CA
2294129 Dec 1998 CA
2296499 Jan 1999 CA
2232302 Jul 2001 CA
2055925 Dec 2002 CA
2131793 Jul 2003 CA
2618137 Feb 2007 CA
2261115 Jun 2007 CA
2229020 Aug 2008 CA
2294129 Sep 2011 CA
101182149 May 2008 CN
101565198 Oct 2009 CN
201485386 May 2010 CN
101840821 Sep 2010 CN
101565198 Jun 2011 CN
102180979 Sep 2011 CN
102284239 Dec 2011 CN
102284239 Jul 2012 CN
103011227 Apr 2013 CN
103011228 Apr 2013 CN
103086661 May 2013 CN
102633445 Jul 2013 CN
103387245 Nov 2013 CN
203437026 Feb 2014 CN
4302539 Aug 1993 DE
19721205 Jul 1998 DE
20117018 Jul 2002 DE
69620423 Nov 2002 DE
69628926 Jun 2004 DE
69733409 Apr 2006 DE
0377010 Jul 1990 EP
0594332 Apr 1994 EP
0655273 May 1995 EP
0655273 Jul 1995 EP
0815391 Jan 1998 EP
0848647 Jun 1998 EP
0851839 Jul 1998 EP
0874698 Nov 1998 EP
0851839 Dec 1998 EP
0848647 Feb 1999 EP
0912456 May 1999 EP
0815391 Aug 1999 EP
0998535 Oct 2000 EP
0851839 Apr 2002 EP
0874698 Jun 2005 EP
0912456 Apr 2007 EP
1928783 Jun 2008 EP
0874698 Jan 2009 EP
2074368 Jul 2009 EP
2135944 Dec 2009 EP
2074368 Oct 2010 EP
1928783 May 2012 EP
2175072 Nov 2002 ES
2202468 Apr 2004 ES
2242975 Nov 2005 ES
2669327 May 1992 FR
2669327 Jul 1994 FR
2816937 May 2002 FR
2157584 Oct 1985 GB
H 01208317 Aug 1989 JP
02593891 Mar 1997 JP
H 0957081 Mar 1997 JP
H 09225255 Sep 1997 JP
H 1190385 Apr 1999 JP
H 11268912 Oct 1999 JP
2000081731 Mar 2000 JP
2000239054 Sep 2000 JP
2000266312 Sep 2000 JP
2001158617 Jun 2001 JP
2002113327 Apr 2002 JP
3813374 Aug 2006 JP
3847504 Nov 2006 JP
2006298732 Nov 2006 JP
3945605 Jul 2007 JP
2008074629 Apr 2008 JP
2009063288 Mar 2009 JP
4287941 Jul 2009 JP
2009179502 Aug 2009 JP
4667577 Apr 2011 JP
4703708 Jun 2011 JP
4606238 Oct 2011 JP
2011228062 Nov 2011 JP
51055292 Dec 2012 JP
5408018 Feb 2014 JP
2003054393 Jul 2003 KR
10-2011-0108990 Oct 2011 KR
10-1121863 Feb 2012 KR
176414 May 1999 PL
188927 May 2005 PL
115252 Dec 1999 RO
2064904 Aug 1996 RU
WO 1990012822 Nov 1990 WO
WO 1992001627 Feb 1992 WO
WO 1993011203 Jun 1993 WO
WO 1993018190 Sep 1993 WO
WO 1994006884 Mar 1994 WO
WO 1994029233 Dec 1994 WO
WO 1996007520 Mar 1996 WO
WO 1996013550 May 1996 WO
WO 1996023932 Aug 1996 WO
WO 1997007882 Mar 1997 WO
WO 1997011030 Mar 1997 WO
WO 1997025160 Jul 1997 WO
WO 1997039991 Oct 1997 WO
WO 1997046843 Dec 1997 WO
WO 1998002391 Jan 1998 WO
WO 1998057892 Dec 1998 WO
WO 1999002620 Jan 1999 WO
WO 1999002620 Apr 1999 WO
WO 1996029541 Sep 1999 WO
WO 2000034182 Jun 2000 WO
WO 2002092701 Nov 2002 WO
WO 2003070655 Aug 2003 WO
WO 2004016566 Feb 2004 WO
WO 2004052490 Jun 2004 WO
WO 2004086876 Oct 2004 WO
WO 2004086876 Nov 2004 WO
WO 2004052490 Dec 2004 WO
WO 2005103767 Nov 2005 WO
WO 2005103767 Jan 2006 WO
WO 2006000891 Jan 2006 WO
WO 2006000891 Apr 2006 WO
WO 2007021646 Feb 2007 WO
WO 2007021646 Apr 2007 WO
WO 2007089337 Aug 2007 WO
WO 2007145310 Dec 2007 WO
WO 2008008576 Jan 2008 WO
WO 2008018358 Feb 2008 WO
WO 2008019003 Feb 2008 WO
WO 2008033283 Mar 2008 WO
WO 2007089337 Apr 2008 WO
WO 2008019003 Nov 2008 WO
WO 2009109705 Sep 2009 WO
WO 2010124378 Nov 2010 WO
WO 2010125247 Nov 2010 WO
WO 2010134868 Nov 2010 WO
WO 2001096240 Dec 2011 WO
WO 2012034997 Mar 2012 WO
WO 2012061147 May 2012 WO
WO 2013112204 Aug 2013 WO
WO 2013123198 Aug 2013 WO
WO 2013154926 Oct 2013 WO
WO 2013162902 Oct 2013 WO
WO 2014019827 Feb 2014 WO
WO 2013123198 Mar 2014 WO
WO 2014041068 Mar 2014 WO
WO 2014064234 May 2014 WO
WO 2014076436 May 2014 WO
WO 2014076437 May 2014 WO
Non-Patent Literature Citations (48)
Entry
International Search Report and Written Opinion for PCT/US2018/041254, dated Oct. 1, 2018, 13 pages.
Extended European Search Report from EP App. 14834220.7, dated Mar. 17, 2017, 7 pages.
International Search Report for PCT/US2014/035099, dated Aug. 26, 2014, 3 pages.
International Search Report for PCT/US2014/049614, dated Nov. 18, 2014, 3 pages.
International Search Report for PCT/2016/057001, dated Jan. 23, 2017, 4 pages.
Arpin, M.T. and S. Yusup. “Enhancement of Calcium Oxide (CaO) for Carbon Dioxide (CO2) Capture,” Canadian Journal of Pure & Applied Sciences, 5(1), (Feb. 2011) pp. 1391-1397.
Barner-Kowollik, Christopher. “Handbook of RAFT Polymerization.” Wiley VCH (2008), Chapters 3, 6, 7, 8, 9, 11, and 12.
Berger, Eric, P.E. and H.B. Fitzgerald. “Use of Calcium-Based Products to Stabilize Ponded Coal Ash Techniques and Results.” 2009 World of Coal Ash (WOCA) Conference, May 4-7, 2009, Lexington, KY (US), 6 pages. http://www.flyash.info/.
Cui, Guang-hua, X. Peng, J. Geng, and C. Jin. “The research on preparation of magnesium hydroxide slurries,” Journal of Hebei Polytechnic University (Natural Science Edition) (Feb. 2010), 32 (1), pp. 48-54. English Abstract on p. 54.
Dagaonkar, Manoj V., A. A.C.M. Beenackers, and V. G. Pangarkar. “Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirred cell,” Chemical Engineering Science (2001), 56 (3) pp. 1095-1101.
Dagaonkar, Manoj V. and A. A.C.M. Beenackers. “Development of a high intensity slurry reactor,” Recents Progres en Genie des Procedes (1999), 13 (66), pp. 373-380.
Dagaonkar, Manoj V. and A. A.C.M. Beenackers. “Gas absorption into aqueous reactive slurries of calcium and magnesium hydroxide in a multiphase reactor,” Catalysis Today (2001), 66 (2-4), pp. 495-501.
Dodd, A.C. and P.G. McComerick. “Synthesis and Processing of Ultrafine Mg-PSZ Powder,” Materials Science Forum (1999), vols. 312-314, pp. 221-226.
Enguang, He, S. Wenyu, and C. Shoutian. “Effects of Phosphate Ion on the Growth of Aragonite Whisker in Heterogeneous Precipitation from Suspension of Ca(OH)2,” Rare Metal Materials and Engineering (Dec. 2000), 29 (6), pp. 398-402.
Garcia-Carmona, J., J. Gomez-Morales, J. Fraile-Sainz, and R. Rodriguez-Clemente. “Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives,” Powder Technology (2003), 130, pp. 307-315.
Guangjun, Lu and C. Fangqin. “Preparation of Coal Briquette by Using Coal Waste and Coal Slurry,” Advanced Materials Research (2012), vols. 391-392, pp. 755-758.
Hendricks et al. “Water Treatment Unit Processes: Physical and Chemical.” New York: CRC Press Taylor & Francis Group (2006), p. 328.
Jun, Liao. “Preparation of Flue Gas Desulfurizing Agent from Carbide Slag Slurry,” Environmental Protection of Chemical Industry (Apr. 27, 2007), 27 (4), pp. 361-363.
Li, Haoxin, J. Yang, and H. Zhu, “Influence of Stearic Acid on Portland Cement Performance as Grinding Aids,” Advanced Materials Research (2012), vols. 374-377, pp. 1244-1248.
Li, Ruilong, S. Xia, J. Zhu, H. Wu, and F. Zhou. “Experimental investigation of drilling waste slurries solidification with phosphogypsum and cinder ash,” Shiyou Yu Tianranqu Huagong (2005), 34 (3), pp. 225-227.
Lovell, Peter A. and M.S. El-Aasser, Editors. “Emulsion Polymerization and Emulsion Polymers.” John Wiley and Sons (1997), Chapters 1, 11, 21, and 22.
Maina, P. “Improvement of Lime Reactivity towards Desulfurization by Hydration Agents,” Chemical Science Transactions (2013), 2(1), pp. 147-159.
Matsuda, Hitoki and T. Iwashita. “Production of highly reactive Ca(OH)2 by hydration of CaO for highly efficient SO2 dry sorption,” Ryusan to Kogyo (2011), 64 (8), pp. 107-114, with machine translation.
Matyjaszewski, Krzysztof, Editor. “Controlled/Living Radical Polymerization: Progress in ATRP, NMP, and RAFT.” ACS Symposium Series 768 (2000), Chapter 10.
Matyjaszewski, Krzysztof and T.P. Davis, Editors. “Handbook of Radical Polymerization.” John Wiley and Sons (2002), Chapters 3, 10, 11, 12, and 15.
Matyjaszewski, Krzysztof, B.S. Sumerlin, and N.V. Tsarevsky, Editors. “Progress in Controlled Radical Polymerization: Mechanisms and Techniques.” ACS Symposium Series 1100 (2009), Chapters 7, 9, 13, 14, 16, 17, 19, and 21.
Odian, George. “Principles of Polymerization, Fourth Edition.” John Wiley and Sons (2004), Chapters 1, 3, and 6.
Osada, Yo, M. Sudo, K. Hamaguchi, T. Doi, and E. Shibuya. “Treatment of Flue Gas from a Municipal Solid Waste (MSW) Incinerator by Electron Beam Irradiation,” NKK Technical Review (1996), 74, pp. 7-16.
Peel, John D. “Paper Science and Paper Manufacture.” Vancouver, BC: Angus Wilde Publications Inc. (1999), p. 90.
Qingfeng, Liu, S. Wenyu, L. Bin, C. Wei, and C. Shoutian. “Preparation of Aragonite by Carbonation Process,” Journal of Xi'an Jiaotong University, Xi'an, CN (Dec. 1999), 33 (12), pp. 17-20.
Rowe, R. C. et al. “Handbook of Pharmaceutical Excipients, First Edition.” Chemical Industry Press, 2015, 4 pages, with English excerpt.
Sanders, J.F., J. Wang, and T.C. Keener. “Fly Ash Hydration with Quicklime for Improving Sorbent Utilization and SO2 Removal in Spray Dryer Absorbers,” United States Environmental Protection Agency, Research and Development, (1995). Proceedings: 1993 SO2 Control Symposium, vol. 2, Paper No. 42, p. 545-548.
Scheurman, Terry. “Selenium Reduction Issues in a Coal Fire Power Plant,” Applied Specialties, Inc., Avon Lake, OH, Official Proceedings—66th International Water Conference (2005), 10 pages.
Serraj, Siham, P. Boudeville, B. Pauvert, and A. Terol. “Effect on composition of dry mechanical grinding of calcium phosphate mixtures,” Journal of Biomedical Materials Research (2001), 55 (4), pp. 566-575.
Shi, Caijun and R.L. Day. “Comparison of different methods for enhancing reactivity of pozzolans,” Cement and Concrete Research, (2001) 31 (5), pp. 813-818.
Smook, Gary A. “Handbook for Pulp & Paper Technologists, Second Edition.” Vancouver, BC: Angus Wilde Publications Inc. (1992), Fifth Printing, 2001, pp. 224-225.
Smook, Gary A. “Handbook for Pulp & Paper Technologists, Second Edition.” Vancouver, BC: Angus Wilde Publications Inc. (1992), Fifth Printing, 2001, p. 283.
Smook, Gary A. “Handbook for Pulp & Paper Technologists, Third Edition.” Vancouver, BC: Angus Wilde Publications Inc. (2002), Chapters 15, 16, and 18.
Spring, R., M. Savoie, Y. Boyer, and M. Leclerc. “Slaker Control at James MaClaren—Toroidal conductivity probes installation has increased efficiency,” Pulp & Paper Canada (1996), 97 (12), pp. 148-151.
Stewart, Dorothy A., D. A. Andrews, P.K. Hazen, G.R. Jones, J.B. Partlow, and F. Azarm. “Full Scale Demonstration of FGD Reagents at the Gibbons Creek Stream Electric Station,” Chemical Lime Company, Fort Worth, TX. Proceedings, 89th Annual Meeting—Air & Waste Management Association (Jun. 23-28, 1996, Nashville, TN), 18 pages.
Stipniece, Liga, K. Salma-Ancane, N. Borodajenko, M. Sokolova, D. Jakovlevs, and L. Berzina-Cimdina. “Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method,” Ceramics International (2014), 40 (2), pp. 3261-3267.
Sun, Zhenchao, F. Yu, F. Li, S. Li, and L. Fan. “Experimental Study of HCl Capture using CaO Sorbents: Activation, Deactivation, Reactivations, and Ionic Transfer Mechanism,” Industrial & Engineering Chemistry Research (2011), 50 (10), pp. 6034-6043.
Thomson, Margaret L. “Pozzolan-Lime Mortar: Limitations of ASTM C593,” ASTM Special Technical Publication , Masonry: Opportunities for the 21st Century, ASTM STP 1432, D. Throop and R.E. Klingner, Editors, ASTM International, West Conshohocken, PA (2003) pp. 88-94.
Yang, Jung-Hsin and S. Shih. “Preparation of high surface area CaCO3 by bubbling CO2 in aqueous suspensions of Ca(OH)2: Effects of (NaPO3)6, Na5P3O10, and Na3PO4 additives,” Powder Technology (2010), 197 (3), pp. 230-234.
Yang, Xiaofeng, L. Peng, B. Guo, W. Li, and Q. Wang. “Study on the Effect of Ethylene Glycol as Grind Aid on Activity Stimulation of Grade III Fly Ash,” Mining and Metallurgical Engineering (Feb. 2010), 30 (1), pp. 84-86.
Yu, Jae Goang and D.S. Kim. Effects of Calcium Hydroxide/Phosphoric Acid Suspending Agents on the Characteristics of Styrene-Based Suspension Polymerized Toners, Korean Chemical Engineering Research (Oct. 2012), 50 (5), pp. 923-928.
Zeman, Frank. “Effect of steam hydration on performance of lime sorbent for CO2 capture,” International Journal of Greenhouse Gas Control, 2 (2008) pp. 203-209.
Zhu, Lu et al. “Water Treatment Technology, Second Edition.” East China University of Science and Technology Press, Aug. 2016, 18 pages, with English excerpt.
Related Publications (1)
Number Date Country
20190016837 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62533245 Jul 2017 US