The invention generally relates to string ribbon crystals and, more particularly, the invention also relates to string used to form string ribbon crystals.
String ribbon crystals, such as those discussed in U.S. Pat. No. 4,689,109 (issued in 1987 and naming Emanuel M. Sachs as the sole inventor), can form the basis of a variety of electronic devices. For example, Evergreen Solar, Inc. of Marlborough, Mass. forms solar cells from conventional string ribbon crystals.
As discussed in greater detail in the noted patent, conventional processes form string ribbon crystals by passing two or more strings through molten silicon. The composition and nature of the string can have a significant impact on the efficiency and, in some instances, the cost of the ultimately formed string ribbon crystal.
In accordance with one embodiment of the invention, a method of making string for string ribbon crystal provides a substrate having an outer surface, and extrudes refractory material over the substrate. The refractory material substantially covers the outer surface of the substrate. The method then cures the refractory material.
For example, the substrate may be formed from a carbon filament or a tow, while the extruded refractory material may include silicon carbide. The method also may form an exterior reduced wetting layer radially outward of the refractory material. In some embodiments, the substrate and refractory material form a generally elongated cross-sectional shape, and/or are generally concentric.
In other embodiments of the invention, a string for forming a ribbon crystal has a substrate, and an extruded refractory material layer substantially covering the substrate.
Those skilled in the art should more fully appreciate advantages of various embodiments of the invention from the following “Description of Illustrative Embodiments,” discussed with reference to the drawings summarized immediately below.
Illustrative embodiments extrude a refractory material over a core/substrate to form string used to grow ribbon crystals. This process beneficially avoids use of complex prior art processes that require hazardous chemicals (e.g., CVD processes). Details of various embodiments are discussed below.
The thickness of the ribbon crystal 10 may vary and be very small relative to its length and width dimensions. For example, the string ribbon crystal 10 may have a thickness ranging from about 60 microns to about 320 microns across its width. Despite this varying thickness, the string ribbon crystal 10 may be considered to have an average thickness across its length and/or width.
The ribbon crystal 10 may be formed from any of a wide variety of materials (often referred to generally as “ribbon material” or “crystal material”), depending upon the application. For example, when grown for a photovoltaic application, the ribbon crystal 10 may be formed from a single element, such as silicon, or a compound, such as a silicon-based material (e.g., silicon germanium). Other illustrative ribbon materials may include gallium arsenide, or indium phosphide. The ribbon material may be any of a variety of crystal types, such as multi-crystalline, single crystalline, polycrystalline, microcrystalline or semi-crystalline.
As known by those skilled in the art, the ribbon crystal 10 is formed from a pair of strings 12 generally embedded/encapsulated by the ribbon material. For simplicity, the ribbon crystal 10 is discussed as being formed from polysilicon ribbon material. It nevertheless should be reiterated that discussion of polysilicon is not intended to limit all embodiments.
Illustrative embodiments grow the ribbon crystal 10 in a ribbon crystal growth furnace 14, such as that shown in
As shown, the crucible 18, which is supported on an interior platform within the housing 16, has a substantially flat top surface. This embodiment of the crucible 18 has an elongated shape with a region for growing silicon ribbon crystals 10 in a side-by-side arrangement along its length. In illustrative embodiments, the crucible 18 is formed from graphite and resistively heated to a temperature capable of maintaining silicon above its melting point. To improve results, the crucible 18 has a length that is much greater than its width. For example, the length of the crucible 18 may be three or more times greater than its width. Of course, in some embodiments, the crucible 18 is not elongated in this manner. For example, the crucible 18 may have a somewhat square shape, or a nonrectangular shape.
As shown in
Many conventional ribbon crystal growth processes form ribbon crystals with a thin neck portion near the string. More specifically,
To increase the neck thickness, those skilled in the art have added equipment to the ribbon growth process. For example, one such solution adds gas jets (not shown) to the furnace 14. These gas jets direct relatively cool gas streams toward the neck portion 36, thus decreasing the temperature in that area to increase neck thickness. Other solutions involve adding specialized meniscus shapers.
Rather than use such additional external measures, illustrative embodiments of the invention engineer the cross-sectional dimension of the string 12 in a prescribed manner. The string 12 then is positioned within the crystal growth furnace 14 in a manner that increases the size of the neck portion 36 of the growing ribbon crystal 10. For example, the resulting ribbon crystal 10 with an average thickness of about 190 microns may have a neck portion 36 with a minimum thickness of about 60 microns, which may suffice in certain applications. This innovation consequently should reduce yield loss, thus reducing production costs.
Whether or not they are elongated, the various strings 12 may be categorized as being either generally concave or generally convex. As used herein, a cross-sectional shape is generally concave when any portion of its perimeter forms at least one non-negligible concavity. Thus, string one is considered to be generally concave despite its other convex portions. Conversely, a cross-sectional shape is considered to be generally convex when its perimeter forms no non-negligible concavities. Thus, string two and string three of
Some embodiments use plural strings 12 to form one edge of a ribbon crystal 10. Strings six and seven show two such embodiments. Specifically, string six shows one embodiment where the individual strings 12 physically contact each other in the final ribbon crystal 10, while string seven shows another embodiment where the individual strings 12 are spaced from each other in the final ribbon crystal 10. It should be noted that embodiments using plural strings 12 may use more than two strings 12. In addition, individual strings 12 of this plural string embodiment may have the same or different cross-sectional shapes (e.g., a first elliptically shaped string 12 and another cross or circular shaped string 12).
The specific shapes of
The process begins at step 500 by forming a core/substrate 28, which acts as a substrate to receive a refractory material layer. As discussed in greater detail in co-pending US patent application having attorney docket number 3253/172 and entitled, “REDUCED WETTING STRING FOR RIBBON CRYSTAL,” (which is incorporated by reference above), the core 28 can be formed from carbon by conventional extruding processes. In other embodiments, however, the core 28 may be a wire, filament, or plurality of small conductive fibers wound together as a tow. For example, post-fabrication processes could form a monofilament through a known fabrication process, such as oxidation, carbonization, or infiltration.
The core 28 may have the desired cross-sectional shape. For example, as shown in
After forming the core 28, the process forms a first coating/layer, which acts as the above noted refractory material layer 30 (step 502). Among other things, the first coating 30 may include silicon carbide, tungsten, or a combination of silicon carbide and tungsten. Conventional wisdom dictates that this outer surface 30 should be very smooth to minimize nucleations that may occur when it contacts molten ribbon material within the furnace 24. Fewer nucleations desirably should produce fewer grains and thus, fewer grain boundaries. Consequently, such strings 12 should be more electrically efficient than those with more grains and more grain boundaries.
To those ends, one commonly used prior art process known to the inventors uses chemical vapor deposition (i.e., “CVD”) to form the refractory material layer 30. Accordingly, such prior art strings should have smoother outer surfaces and thus, produce fewer grains and grain boundaries. Undesirably, however, such a process is complex and uses hazardous chemicals.
Illustrative embodiments solve these problems. Specifically, to avoid the use of such complex machinery and hazardous chemicals of a CVD process (or other similar process), illustrative embodiments extrude the refractory material directly onto the core/substrate 28, thus covering substantially the entire outer (circumferential) surface of the core 28. This is contrary to prior art teachings, however, because it is expected to yield a less smooth surface. The inventors nevertheless anticipate that such a string can produce satisfactory results in a much less costly manner and with fewer safety risks.
Formation of the extruded refractory material layer 30 may involve, among other things, a pulltrusion process, or both spinning of a refractory material with a polymer component, which subsequently is baked off. Processes may use at least one component of carbon, silicon, silicon carbide, silicon nitride, aluminum, mullite, silicon dioxide, BN particles, or fibers mixed with a polymer binder, coupled with extrusion/pulltrusion. This also may involve bicomponent extrusion of a core 28 with at least one silicon carbide, carbon, silicon, and a sheath with a least one of oxide, mullite, carbon, and/or silicon carbide. Accordingly, as noted above, the core 28 effectively acts as a substrate for supporting the refractory material layer 30. For example, the refractory material layer 30 may be, or may not be, generally concentric with the core 28. After it is extruded onto the core 28, the refractory material layer 30 is allowed to harden/cure for a sufficient amount of time.
As discussed below, some embodiments form one or more layers radially outward of the refractory material layer 30. Such layers can be smoother, or take on a roughness that is similar to that of this layer 30.
This step thus forms what is considered to be a base string portion 26. At this point in the process, the base string portion 26 has a combined coefficient of thermal expansion that preferably generally matches the coefficient of thermal expansion of the ribbon material. Specifically, the thermal expansion characteristics of the string 12 should be sufficiently well matched to the ribbon material so that excessive stress does not develop at the interface. Stress is considered excessive if the string 12 exhibits a tendency to separate from the ribbon during reasonable subsequent ribbon crystal handling and processing steps, or if the string 12 exhibits a tendency to curl outwardly or inwardly from the ribbon crystal edge. In other embodiments, however, the coefficient of thermal expansion of the base string portion 26 does not generally match that of the ribbon material.
As noted above, some embodiments of the invention may have one or more additional layers, depending upon the application. For example, as discussed in greater detail in the above noted incorporated patent application having attorney docket number 3253/172, the string 12 may have a non-wetting/reduced wetting layer 32 to increase the grain size of the ribbon material. In that case, the process continues to step 504, which forms an exposed non-wetting/reduced layer 32 on the base string portion 26. In applications sensitive to coefficient of thermal expansion differences, this layer 32 preferably is very thin so that it has a negligible impact on the overall string coefficient of thermal expansion. For example, the reduced wetting layer 32 should be much thinner than that of the refractory material layer 30.
In embodiments using this non-wetting layer 32, the contact angle with the ribbon material of its exterior surface should be carefully controlled to cause the molten ribbon material to adhere to it—otherwise, the process cannot form the ribbon crystal 10. In applications using molten polysilicon, for example, it is anticipated that contact angles with silicon of between about 15 and 120° degrees should produce satisfactory results. Such angles of greater than 25 degrees may produce better results.
Among other ways, the non-wetting layer 32 may be formed by CVD processes, dip coating or other methods. For example, the base string portion 26 may be CVD coated by applying electrical contacts in a deposition chamber while it is being fed through the chamber—thus heating the base string portion 26 itself. Alternatively, the base string portion 26 may be heated by induction heating through the chamber.
Related techniques for implementing this step include:
The string 12 also may have a handling layer 34 radially outward of the refractory material layer 30 to maintain the integrity of the base string portion 26. To that end, if included, the handling layer 34 provides a small compressive stress to the base string portion 26, thus improving robustness to the overall string 12. Accordingly, if the base string portion 26 develops a crack, the compressive stress of the handling layer 34 should reduce the likelihood that the string 12 will break. Among other things, the handling layer 34 may be a thin layer of carbon (e.g., one or two microns thick for strings 12 having generally known sizes).
Accordingly, prior to performing step 504, some embodiments may form a handling layer 34 that is separate from the produced nonwetting layer 32 (e.g., see string two of
It then is determined at step 506 if the coated string 12 has filaments extending through the nonwetting layer 32 (such filaments are referred to herein as “whiskers”). This can occur, for example, when a tow of filaments forms the core 28. If the coated string 12 has whiskers, then the process shaves them off at step 508. The process then may loop back to step 504, which re-applies the nonwetting layer 32.
Alternatively, if the string 12 has no whiskers, the process continues to step 510, which provides the string 12 to the furnace 14 as shown in
Rather than using the methods above for forming the string 12, some embodiments machine or bore a concavity into a rounded or other otherwise generally convex string 12. Accordingly, the string 12 may be formed by other methods.
Illustrative embodiments orient the strings 12 in the furnace 14 in a manner that increases the thickness of the ribbon crystal neck portion 36. For example,
More specifically, the cross-section of each string 12 has a largest dimension, each of which is shown as double-head arrows in
It should be noted that orientations other than those shown in
At this point, for each ribbon crystal 10 being grown, the process passes two strings 12 (together forming the ultimate ribbon crystal width) through the furnace 14 and crucible 18, thus forming the string ribbon crystal 10 (step 512).
Accordingly, illustrative embodiments of the invention extrude the refractory material layer 30 on the core 28, thus avoiding problems associated with prior art deposition techniques and reducing production costs.
Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.
This patent application claims priority from provisional U.S. patent application No. 60/969,263, filed Aug. 31, 2007, entitled, “STRING RIBBON CRYSTAL AND STRING WITH IMPROVED EFFICIENCY,” assigned attorney docket number 3253/106, and naming Christine Richardson, Lawrence Felton, Richard Wallace, and Scott Reitsma as inventors, the disclosure of which is incorporated herein, in its entirety, by reference. This patent application also is related to the following copending, co-owned patent applications, filed on even date herewith, claiming the same priority as noted above and incorporated herein, in their entireties, by reference: Attorney Docket Number 3253/172, entitled, “REDUCED WETTING STRING FOR RIBBON CRYSTAL,” and Attorney Docket Number 3253/173, entitled, “RIBBON CRYSTAL STRING FOR INCREASING WAFER YIELD.”
Number | Date | Country | |
---|---|---|---|
60969263 | Aug 2007 | US |