This application claims priority pursuant to 35 U.S.C. 119(e) to U.S. Provisional Application No. 61/045,489, filed on Apr. 16, 2008 which is incorporated herein by reference in its entirety.
The present invention relates to a ribbon guide, and more particularly, to a ribbon guide for installing thermal ribbon in thermal printers and a method for such installation.
A thermal printer may be defined as a printer that prints on paper or synthetic material by selectively melting selected portions of an ink coated ribbon so that the ink is adhered to the material on which it is applied. Thermal printers generally use a fixed width thermal print head, pressing onto the material to be printed as the material passes over a driven rubber roller, called a platen roller. The layered ribbon, also known as thermal transfer ribbon is sandwiched between the print head, the material to be printed, and the platen roller. A typical thermal ribbon is a very thin film, on the order of about one mil, and is comprised of several layers including a resin and/or wax layer containing a transfer ink, a release layer over the resin/wax layer, a carrier layer over the release layer, and a back coat over the carrier layer to provide a low-friction surface for engaging the print head. The thermal ribbon is spooled onto a reel and the thermal ribbon is driven through the printer synchronized with the material to be printed. As the material to be printed and the thermal ribbon are driven beneath the print head, tiny pixels across the width of the print head are heated to melt the ink off the thermal ribbon and onto the material to be printed.
Thermal printers are very useful when the life of the printed material is long or the printed material needs to survive in a harsh environment. Examples of thermal printer devices are shown and described in U.S. Pat. No. 5,372,439 (hereafter “'439”) issued in 1994 to Poole et al., for a “Thermal Transfer Printer With Controlled Ribbon Feed”; U.S. Pat. No. 5,537,135 issued in 1996 to Hevenor et al., for a “Method And Apparatus For Making A Graphic Product”; and U.S. Pat. No. 6,057,870 (hereafter “'870”) issued in 2000 to Monnier et al., for a “Ribbon Drive System For A Thermal Demand Printer.”
In regard to the thermal printers disclosed in the '439 and '870 patents, the loading or installing of the thin film thermal ribbon through the thermal printers is difficult and somewhat dangerous. No specialized apparatus is known to exist for the purpose of helping an operator install a fresh thermal ribbon supply.
In accordance with the present invention, an advantageous apparatus is provided that helps an operator install or load a new thermal ribbon supply. The present invention also provides an advantageous method for the installation of the thermal ribbon. A described preferred embodiment of a ribbon guide is set forth below and includes a simple and inexpensive solution to the installation problem. The ribbon guide reduces ribbon handling by an operator, and thus his/her hands are cleaner and likely to smell much less than would be the case if the thermal ribbon was handled during the entire installation process. Use of the ribbon guide also keeps the hands of an operator away from moving and/or hot parts of the thermal printer and is therefore a safety feature. In addition, forming the ribbon guide of a specific material to be described below also reduces the amount of dust, oil, and dirt entering the interior of the thermal printer. An added advantage is that the ribbon guide may be used as an advertising platform and/or as a helpful tool.
Briefly summarized, the invention includes a ribbon guide for a thermal ribbon used in a thermal printer, the ribbon guide having a first portion to enable connection with the thermal ribbon, and another portion integral with the first portion having a surface for printing thereon. The invention also relates to a method for using the ribbon guide to install the thermal ribbon in the thermal printer, the method including the steps of placing an end of a supply of thermal ribbon into an opening in the ribbon guide to have the ribbon guide engage and restrain the thermal ribbon, gripping the ribbon guide, and moving the ribbon guide passed internal mechanisms and a print head of the thermal printer.
For the purpose of facilitating an understanding of the invention, the accompanying drawings and description illustrate a preferred embodiment thereof, from which the invention, its structures, its construction and operation, its processes, and many related advantages may be readily understood and appreciated.
The following description is provided to enable those skilled in the art to make and use the described embodiment set forth in the best mode contemplated for carrying out the invention. Various modifications, equivalents, variations, and alternatives, however, will be readily apparent to those skilled in the art. Any and all such modifications, variations, equivalents, and alternatives are intended to fall within the spirit and scope of the present invention.
Referring to
A preferred width for the first portion 12 of the ribbon guide 10 is about two inches, and for the third portion 16, a preferred width is about four inches. A preferred length for the ribbon guide is about eight inches of which about one-quarter of the length is devoted to the first portion 12, about one-quarter to the second portion 14, and about two-quarters to the third portion 16. In the alternative, the ribbon guide may be formed in other shapes, for example, a rectangle, a square, an oval, or even a figure eight configuration. Alternatively, other dimensions for the ribbon guide may be used and other kinds of printing may appear on the ribbon guide surfaces as desired. Dimensions for the ribbon guide may be a function of the size of the thermal printer.
A preferred material for the ribbon guide 10 is V-Max® brand synthetic paper that is available from Valeron Strength Films, a business unit of Illinois Tool Works Inc., with a location in Houston, Tex. V-Max® brand synthetic paper is a multi-layer product comprised of thin individual layers of high density polyethylene that have been extruded, stretched, bias-cut and cross laminated into a composite structure comprised of three to fifteen total layers. This process results in a unique polyolefin sheet that is extremely tough, tear resistant and completely waterproof. Unaffected by most chemicals, it has a wide service temperature range and is formulated to provide extended outdoor performance, in part because it is UV-stabilized. V-Max® brand synthetic paper is non-toxic, odorless and can be recycled or incinerated. Optional clay coatings may be added to the surfaces of the ribbon guide and are designed to enhance smoothness and provide superior printability.
It is preferred that the thickness of the ribbon guide 10 is approximately twenty mils. A ribbon guide of V-Max® brand synthetic paper of about twenty mils thickness will be generally self supporting, but bendable and flexible, so as to allow the ribbon guide to be manipulated and pushed or guided through the internal mechanisms of a thermal printer as will be explained below in more detail. A ribbon guide formed of V-Max® brand synthetic paper is very durable and will have a long usage life. The material is also readily available and relatively inexpensive. Alternatively, other films and synthetic papers may be used for forming the ribbon guide, if desired. Also, decorative designs may be printed on the ribbon guide instead of, or in addition to, the advertising.
Referring now to
As can now be appreciated, the very thin thermal ribbon 32, by itself, is difficult to handle and push through a thermal printer because the thermal ribbon is flimsy and non self-supporting. Any force placed against the end portion 30 of the thermal ribbon 32 will immediately collapse or compress the thermal ribbon. By contrast, the ribbon guide 10, being self-supporting, resists the usual forces expected in a loading operation and may bend, but the ribbon guide will not collapse during an installation process the way the thermal ribbon will collapse. The engagement between the thermal ribbon 32 and the ribbon guide material around the cross-shaped slit 20 provides enough interference and friction to maintain the thermal ribbon in contact with the ribbon guide during the installation process.
The hole 18 in the first portion 12 of the ribbon guide 10 is formed for convenience of an operator who may hang the ribbon guide from a peg or a nail (not shown) when the ribbon guide is not being used. In the alternative, the ribbon guide may be rested on a counter top and the hole may not be necessary.
Turning now to
Using the ribbon guide 10 also reduces ribbon handling by an operator, and thus, his/her hands are cleaner and more likely to be free of any smell, or any smell may be greatly reduced. Use of a ribbon guide also keeps the hands of an operator away from moving and/or hot parts of the thermal printer and is therefore, an advantageous safety feature. In addition, by forming the ribbon guide of V-Max® brand synthetic paper the amount of dust, oil, and dirt entering the interior of the thermal printer is reduced because dust, oil, dirt and the like, do not easily adhere to a clay coated ribbon guide of V-Max® brand synthetic paper. And as an added bonus, the ribbon guide 10 may be used as an advertising platform and as a helpful tool. V-Max® brand synthetic paper is easily printable and is inexpensive enough to allow ribbon guides to be given away as promotional advertising by a thermal printer producer/seller or a media supplier, as examples.
Shown diagrammatically in
In operation, a fresh reel of thermal ribbon 60 is loaded onto a spindle or shaft 62, after which an end portion of the thermal ribbon is connected and engaged with the ribbon guide 10 as shown in
Downstream (that is, following movement of the thermal ribbon 63 and the media 72 in the view of
From the foregoing, it can be seen that there has been provided features for a ribbon guide for thermal ribbons of the type used in thermal printers and for a method of using the ribbon guide. While a particular embodiment of the present invention has been shown and described in detail, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects. Therefore, the aim here is to cover all such changes and modifications as fall within the true spirit and scope of the invention as expressed in the appended claims. The matters set forth in the foregoing description and accompanying drawings are offered by way of illustrations only and not as claim limitations. The actual scope of the invention is to be defined by the subsequent claims when viewed in their proper perspective based on the prior art.
Number | Name | Date | Kind |
---|---|---|---|
4840502 | Grey | Jun 1989 | A |
4998834 | Taylor | Mar 1991 | A |
5100250 | Suzuki et al. | Mar 1992 | A |
5110228 | Yokomizo | May 1992 | A |
5372439 | Poole et al. | Dec 1994 | A |
5399035 | Nakae | Mar 1995 | A |
5537135 | Hevenor et al. | Jul 1996 | A |
5727887 | Webster et al. | Mar 1998 | A |
5885015 | No et al. | Mar 1999 | A |
5961229 | Kameyama | Oct 1999 | A |
6057870 | Monnier et al. | May 2000 | A |
6195111 | Nelson et al. | Feb 2001 | B1 |
6226026 | Suzuki | May 2001 | B1 |
6388693 | Loos | May 2002 | B1 |
20070025790 | Lin | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
0471471 | Feb 1992 | EP |
769412 | Mar 1957 | GB |
841947 | Jul 1960 | GB |
2007-76548 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20090262177 A1 | Oct 2009 | US |