The invention relates to a ribbon needle loom for manufacturing a strip, in particular a label strip, having a woven-in conductive thread, in particular antenna thread.
A ribbon needle loom of the type initially mentioned is known from CH 490 581. There, the fancy threads are arranged by means of a blade during the weaving of a strip. How the blade is to be actuated cannot be gathered from the publication. There are also no suggestions to be found that the ribbon needle loom could be suitable for weaving in a conductive thread, in particular an antenna thread.
WO 2005/071605 describes a textile material with an antenna and with an RF transponder. The textile material can be manufactured by means of a weaving technique. However, more details of this cannot be gathered from the publication.
The object of the invention is to specify a ribbon needle loom which is suitable for manufacturing a strip, in particular a label strip, having a woven-in conductive thread, in particular antenna thread.
By the arrangement of a first drive device for inserting and withdrawing the blade in the shed and with a second drive device for moving the blade over the width of the strip, a ribbon needle loom is made available which makes it possible to weave in a conductor thread, in particular an antenna thread. In this case, the blade is arranged on a shaft which is oriented transversely with respect to the warp direction and which is suitable by means of the first drive device for executing a pivoting movement and by means of the second drive device for executing a traveling movement in the axial direction of the shaft.
By means of the needle loom according to the present invention, the conductive thread can be woven in in many different ways. In the case of zigzag weaving in, the conductive thread can be introduced under the weft thread during each weft or be led freely over the warp threads between the ends of the zigzag lay and come under the weft thread at the ends of the zigzag movement only. However, any intermediate combination is also possible. On the other hand, a meander-like lay is possible, in which the conductive thread is alternately led transversely over the entire weaving width during a single weft and is then tucked in each case between the same warp threads for a larger number of wefts. Any desired asymmetric lays of the conductive thread are also possible.
It is particularly advantageous if the first and the second drive device are designed as a combined pivoting/linear motor.
The second drive device may be configured as a linear motor connected to the shaft. A particularly simple solution for the configuration of the first drive device is where the drive device cooperates with a push rod which is connected to the shaft via a mechanism, preferably a lever mechanism. In this case, the first drive device may have a linear motor cooperating with the push rod.
A particularly preferred embodiment is where the feed device is coupled to a return device connected to a main drive of the ribbon needle loom, in order, after each weft insertion, to withdraw the blade, if appropriate forcibly, out of the weaving region, should the first drive device for pivoting the blade into and out of the shed fail. For this purpose, the return device may have an eccentric drive which is connected to the main drive and is connected to an oscillating lever with cooperates with a stop on the push rod in such a way that, after each weft insertion and before the reed is beaten up at the cloth edge, the push rod can be moved back in each case into the basic position outside the range of action of the reed.
To avoid damage to the ribbon fabric and/or to the ribbon needle loom, the blade may be provided with a predetermined breaking point which lies outside the weaving region and which is activated in the event of a malfunction.
It is particularly advantageous if the first and the second drive device are connected to an electronic control device for the pattern control of the ribbon needle loom.
Exemplary embodiments of the ribbon needle loom are described in more detail below with reference to the drawings in which:
A blade 34 serves for inserting the conductive thread 14 and at the front end has a thread eye 36 through which the conductive thread 14 is led. The blade 34 is fastened to a shaft 38 which by means of a first drive device 40 executes a pivoting movement 42 in order to insert the blade 34 between the warp threads 8 into the shed 24, specifically to an extent such that the loop of the conductive thread 14 comes under the insertion path of the weft insertion needle 26. The conductive thread is thereby tied in in the desired position and thus secured.
After the withdrawal of the blade 34 into the basic position G indicated by dashes, the blade 34 can be moved by means of a second drive device 44 in a linear movement 48 along the shaft 38 over the width of the ribbon fabric 2, in order to introduce the blade 34 in another desired position of the ribbon fabric 2 between the warp threads 8 into the shed 24 and fasten it. In the present example, the first and the second drive device 40, 44 are designed as a combined linear and pivoting motor 50. The motor is connected to an electronic control device 52 which serves for the pattern control of the needle loom 22 and consequently also of the blade 34.
To safeguard the ribbon needle loom, on the one hand, and the ribbon fabric, on the other hand, instead of the return device 60, the blade 34 may be provided with a predetermined breaking point 72 which lies outside the weaving region. This predetermined breaking point may be used, on the one hand, when the second drive device 44a executes a linear movement 48 transversely with respect to the ribbon fabric 22, even before the blade 34 has left the shed 24. On the other hand, the predetermined breaking point 70 may be used when the reed 30 executes the beating up of the weft thread loop 6 even before the blade 34 has returned into the basic position G.
This application claims priority of PCT application PCT/CH2005/000772 having a priority date of Dec. 23, 2005, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2005/000772 | 12/23/2005 | WO | 00 | 5/30/2008 |