This application claims the benefit of priority to Taiwan Patent Application No. 107201399, filed on Jan. 29, 2018. The entire content of the above identified application is incorporated herein by reference.
Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the present disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
The present disclosure relates to a ribbon rewinding mechanism for providing stable ribbon tension, and more particularly to a ribbon rewinding mechanism for providing stable ribbon tension that is provided with a plurality of unidirectional elements and disposed in a printer.
A conventional label printer has torsion springs (or friction members such as pieces of wool felt) arranged at its ribbon supply shaft and ribbon take-up shaft, so as to maintain ribbon tension during a printing process, and rewind a carbon ribbon for a short distance through the elastic force of the torsion springs after a printed label is torn off. In this way, before the printer prints the next label, a portion that is left protruding out of the printer after the previous printing process can be rewound to facilitate a subsequent printing process.
However, the conventional torsion-spring-aided ribbon rewinding design for a label printer only allows the carbon ribbon to be rewound for a short distance. In applications requiring printing of longer distances, the carbon ribbon cannot be rewound completely. As a solution, driving the ribbon supply shaft and the ribbon take-up shaft respectively by a direct current (DC) motor to rewind the carbon ribbon has been proposed. However, such a solution not only involves a more complicated overall mechanism and incurs higher costs, but is prone to cause the carbon ribbon to be too loose or too tight if there is an improper rotational speed design or a change in motor characteristics after being used for a long time.
A loose carbon ribbon may cause ribbon wrinkling during a printing process, and therefore affect printing quality; and a carbon ribbon that is too tight is prone to break.
As the technical solution of driving the ribbon supply shaft and the ribbon take-up shaft respectively by a DC motor to rewind a belt body not only incurs higher costs and difficulties in adjusting for ideal working conditions, but also has less-than-desired stability, there is still room for improvement in belt body rewinding techniques.
In response to the above-referenced technical inadequacies, the present disclosure provides a ribbon rewinding mechanism for providing stable ribbon tension in a printer, which serves as a low cost solution having high operational stability.
In one aspect, the present disclosure is directed to a ribbon rewinding mechanism for providing stable ribbon tension in a printer, which includes a base body, a supply shaft assembly, a take-up shaft assembly, a driving unit and a transmission system. The base body is disposed on the printer. The supply shaft assembly includes a first axis rod, at least one supply outer cover and at least one first elastic member. The first axis rod is connected to the base body through a first unidirectional transmission element. The at least one supply outer cover is connectable to a first end of a ribbon. The supply outer cover and the first axis rod drive each other through the first elastic member. The take-up shaft assembly includes a second axis rod, at least one take-up outer cover and at least one second elastic member. The second axis rod is connected to the base body through a second unidirectional transmission element. The at least one take-up outer cover is connectable to a second end of the ribbon. The take-up outer cover and the second axis rod drive each other through the second elastic member. The transmission system is connected to the driving unit, connected to the first axis rod through a third unidirectional transmission element, and connected to the second axis rod through a fourth unidirectional transmission element. When the driving unit drives the transmission system to rotate in a supplying direction, the fourth unidirectional transmission element drives the take-up shaft assembly to rotate, the take-up shaft assembly drives the supply outer cover to rotate through the ribbon, and the first axis rod is restricted by the first unidirectional transmission element from causing the rotation of the supply outer cover. When the driving unit drives the transmission system to rotate in a rewinding direction, the third unidirectional transmission element drives the supply shaft assembly to rotate, the supply shaft assembly drives the take-up outer cover to rotate through the ribbon, and the second axis rod is restricted by the second unidirectional transmission element from causing the rotation of the take-up outer cover.
In another aspect, the present disclosure is directed to a ribbon rewinding mechanism for providing stable ribbon tension, which includes a base body, a supply shaft assembly, a take-up shaft assembly, a driving unit and a transmission system. The supply shaft assembly includes a first axis rod, at least one supply outer cover and at least one first elastic member. The first axis rod is connected to the base body through a first unidirectional transmission element. The at least one supply outer cover is connectable to a first end of a ribbon. The supply outer cover and the first axis rod drive each other through the first elastic member. The take-up shaft assembly includes a second axis rod, at least one take-up outer cover and at least one second elastic member. The second axis rod is connected to the base body through a second unidirectional transmission element. The at least one take-up outer cover is connectable to a second end of the ribbon. The take-up outer cover and the second axis rod drive each other through the second elastic member. The transmission system is connected to the driving unit, connected to the first axis rod through a third unidirectional transmission element, and connected to the second axis rod through a fourth unidirectional transmission element. When the driving unit drives the transmission system to rotate in a supplying direction, the fourth unidirectional transmission element drives the take-up shaft assembly to rotate, the take-up shaft assembly drives the supply outer cover to rotate through the ribbon, and the first axis rod is restricted by the first unidirectional transmission element from causing the rotation of the supply outer cover. When the driving unit drives the transmission system to rotate in a rewinding direction, the third unidirectional transmission element drives the supply shaft assembly to rotate, the supply shaft assembly drives the take-up outer cover to rotate through the ribbon, and the second axis rod is restricted by the second unidirectional transmission element from causing the rotation of the take-up outer cover.
Therefore, through the technical feature of “the first unidirectional transmission element,” “the second unidirectional transmission element,” “the third unidirectional transmission element” and “the fourth unidirectional transmission element” cooperating with each other, the ribbon rewinding mechanism for providing stable ribbon tension in a printer can stably provide the carbon ribbon with proper tension during the supplying (printing) process and the rewinding (especially for longer distances) process, and during the rewinding process, the carbon ribbon B can be continuously rewound for a distance needed.
These and other aspects of the present disclosure will become apparent from the following description of certain embodiments taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the present disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, in which:
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
Reference is made to
Further, the supply shaft assembly 12 and the take-up shaft assembly 13 are disposed on the printer D through the base body 11. The base body 11 can be a mounting plate detachably disposed on the printer D, or may be a part of the printer D itself. In the present embodiment, a carbon ribbon B is a ribbon (in the present embodiment, a carbon ribbon) used for printing a label, and the two ends of the carbon ribbon B are respectively connected to the supply shaft assembly 12 and the take-up shaft assembly 13. As the supply shaft assembly 12 or the take-up shaft assembly 13 rotates, the content desired by a user is printed onto the paper strip P.
Next, the specific structure of the supply shaft assembly 12 and the take-up shaft assembly 13 and their connection relationship with the base body 11 is further described as follows. Reference is made to
Specifically, the first elastic member 123 and the second elastic member 133 of the present embodiment can be elastic torsion springs. Taking the supply shaft assembly 12 as an example, when the first axis rod 121 rotates, the friction between the first axis rod 121 and the first elastic member 123 and between the first elastic member 123 and the supply outer cover 122 causes the supply outer cover 122 and the first axial rod 121 to drive each other, and causes the first elastic member 123 to be elastically deformed and cumulates elastic potential energy in the first elastic member 123. Through the cumulated elastic potential energy in the first elastic member 123, the tension on the carbon ribbon B (as shown in
Further, referring to
Referring to
Specifically, the transmission system 14 is connected to the first axis rod 121 through a third unidirectional transmission element R3, and connected to the second axis rod 131 through a fourth unidirectional transmission element R4. Accordingly, the transmission system 14 can drive the first axis rod 121 through the third unidirectional transmission element R3, and can also drive the second axis rod 131 through the fourth unidirectional transmission element R4. In the present embodiment, the transmission system 14 further includes a supply gear 141, a take-up gear 142, and a transmission gear set 143. The supply gear 141 is connected to the third unidirectional transmission element R3 to drive the first axis rod 121 through the third unidirectional transmission element R3. The take-up gear 142 is connected to the fourth unidirectional transmission element R4 to drive the second axis rod 131 through the fourth transmission element R4. The transmission gear set 143 is meshed with the supply gear 141 and the take-up gear 142, respectively, such that the supply gear 141 and the take-up gear 142 rotate together. In the present embodiment, the transmission gear set 143 has three intermeshing gears, but the present disclosure is not limited thereto. Specifically, as long as a structure can drive the supply gear 141 and the take-up gear 142 to rotate with each other, such a structure can be defined as the transmission gear set 143.
Referring to
In this state, since the rotation of the first axis rod 121 is restricted by the first unidirectional transmission element R1, although the supply outer cover 122 is driven by the carbon ribbon B, the supply outer cover 122 cannot drive the first axis rod 121 through the first elastic member 123. Specifically, since the rotation of the first axis rod 121 is restricted by the first unidirectional transmission element R1, friction continuously acts on the first elastic member 123, and the elastic potential energy is cumulated in the first elastic member 123, until the cumulated elastic potential energy is greater than the maximum static friction between the first elastic member 123 and the first axis rod 121 or the supply outer cover 122. When the cumulated elastic potential energy is greater than the maximum static friction between the first elastic member 123 and the first axis rod 121 or the supply outer cover 122, the first elastic member 123 rotates relative to the first axis rod 121 or the supply outer cover 122. When the external force applied to the first elastic member 123 is gone (for example, when printing is completed), the elastic restoring force of the first elastic member 123 is exerted on the first axis rod 121 and the supply outer cover 122, thereby driving the supply outer cover 122 to rotate in the opposite direction to rewind the carbon ribbon B for a small distance. It should be particularly noted that since the amount of the cumulated elastic potential energy is limited, the short-distance rewinding mechanism discussed above cannot rewind the carbon ribbon B for a longer distance continuously.
Referring to
In the foregoing process of rewinding the carbon ribbon B, the supply shaft assembly 12 drives the take-up outer cover 132 through the carbon ribbon B. Similarly, since the rotation of the second axis rod 131 is restricted by the second unidirectional transmission element R2, although the take-up outer cover 132 is driven by the carbon ribbon B, the take-up outer cover 132 cannot drive the second axis rod 131 through the second elastic member 133.
Reference is made again to
By contrast, during the process of rewinding the carbon ribbon B, although the supply gear 141 drives the first axis rod 121 of the supply shaft assembly 12 to rotate through the third unidirectional transmission element R3, since the fourth unidirectional transmission element R4 is in an idle state, the take-up gear 142 does not drive the second axis rod 131 to rotate (and at this time, the second axis rod 131 is restricted by the second unidirectional transmission element R2, and therefore does not rotate relative to the base body 11) when rotating together with the supply gear 141.
The afore-referenced design has at least the following advantages. Through the first unidirectional transmission element R1, the second unidirectional transmission element R2, the third unidirectional transmission element R3 and the fourth unidirectional transmission element R4 that are in cooperation with the first elastic member 123 and the second elastic member 133, a constant tension can be exerted on the carbon ribbon B regardless of whether the first axial rod 121 rotates together with the second axial rod 131, or whether the first axial rod 121 and the second axial rod 131 are respectively driven by a motor, and the outermost ribbon layers wound respectively thereon have different rotational speeds. Accordingly, problems such as loosening or breaking of the carbon ribbon B can be avoided.
Also, in the present embodiment, the first unidirectional transmission element R1, the second unidirectional transmission element R2, the third unidirectional transmission element R3, and the fourth unidirectional transmission element R4 can be unidirectional bearings, while in other embodiments of the present disclosure, the unidirectional transmission elements are not limited to being unidirectional bearings. Specifically, as long as a component is capable of having a transmission state and an idle state, and achieving a unidirectional transmission purpose, the component can be used as the first unidirectional transmission element R1, the second unidirectional transmission element R2, the third unidirectional transmission element R3, or the fourth unidirectional transmission element R4 of the present disclosure.
Referring again to
Therefore, through the technical feature of “the first unidirectional transmission element R1,” “the second unidirectional transmission element R2,” “the third unidirectional transmission element R3” and “the fourth unidirectional transmission element R4” cooperating with each other, the ribbon rewinding mechanism 1 for providing stable ribbon tension of the present disclosure can stably provide the carbon ribbon B with proper tension during the supplying (printing) process and the rewinding (especially for longer distances) process, and during the rewinding process, the carbon ribbon B can be continuously rewound for a distance needed.
Further, through a simpler structural design, the present disclosure achieves an excellent effect of stably providing proper tension at a very low cost, which helps to greatly enhance the competitive advantage of a product. Although the present disclosure mainly uses the printer D to exemplarily describe the mechanism for pulling a ribbon (such as the carbon ribbon B for printing) in two opposite directions for a long distance, but in other embodiments, the mechanism can also be applied to other devices that require a belt body to be pulled.
The foregoing description of the exemplary embodiments of the present disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
Certain embodiments were chosen and described in order to explain the principles of the present disclosure and their practical application so as to enable others skilled in the art to utilize the present disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
Number | Date | Country | Kind |
---|---|---|---|
107201399 | Jan 2018 | TW | national |