The disclosure relates generally to optical communication cables and more particularly to tools and methods for mass fusion splicing of the optical fibers in those cables. Demand is growing for higher fiber count cables and/or higher density of optical fibers in a single cable. As cable prices have decreased over the years, cable installation costs have continued to increase. Accordingly, there is a desire to put more fibers in the same space in order to reduce total installed costs. The trend is toward smaller diameter cables and/or the most fibers possible that can fit inside a given diameter duct space. One option for cable manufacturers to meet this demand is with ribbon cables having densely stacked ribbons of optical fibers or solutions that rely on rollable ribbon concepts, which incorporate, for example, intermittent webs lightly tacking the fibers together to create flexible ribbons that can be more easily rolled to conform to high density packing in a cable jacket or duct. Moreover, new optical fiber designs, in particular those having smaller outside diameters, such as 200 μm optical fibers, are available for use in these ribbon cables. Replacing the larger 250 μm fibers that have been used in conventional ribbon cables can allow even denser fiber counts in cables having the same or smaller size parameters as those conventional ribbon cables.
A key customer value for these cables remains the desire that the fibers can still be mass fusion spliced. Moreover, the ability to mass fusion splice twelve 200 μm to twelve 250 μm fibers is required to enable successful integration of these new cables into existing network infrastructures. However, when trying to mass fusion splice, for example twelve 200 μm fibers in ribbon form to twelve 250 μm fibers in ribbon form, each one of the fibers in the 200 μm ribbon needs to be offset some distance to have its core line up with the core of the corresponding fiber in the 250 μm ribbon.
Typical mass fusion splice machines have two sets of V-grooves designed to accurately align each fiber of a twelve-fiber 250 μm ribbon to each corresponding fiber of a second twelve-fiber 250 μm ribbon for splicing. In addition, these mass fusion splice machines use fiber handler assemblies during preparation of the fibers for splicing outside of the machine, placing and aligning the fibers into the v-grooves of the machines. The handler assemblies are used to hold the ribbon while removing a distal section of the ribbon matrix to expose the individual fibers for splicing. In addition, the handler assemblies separate the fibers into the correct spacing to align with the v-grooves in the splicing machines. The handler assembly for each ribbon to be spliced is typically mounted in a splicing machine to rest at a slight downward angle to bend the fibers slightly as they enter the V-groove arrays, using the bending stiffness of the individual fibers to lay them firmly in the V-grooves prior to closing a retaining lid of the splicing machine.
There is a need to have specialized handler assemblies and methods of splicing that enable use of conventional splice machines for splicing of a first optical fiber ribbon having a first nominal spacing (e.g., 200 μm) to a second optical fiber ribbon having a second nominal spacing (e.g., 250 μm) different from the first nominal spacing.
Conventional ribbon cables typically comprise stacks of 12 fiber ribbons of 250 μm fibers. In accordance with the desire to achieve higher fiber densities in cables without enlarging the space required to house the higher fiber counts, aspects of the present disclosure are based on 200 μm low loss optical fibers used in ribbons or ribbon stacks and the need to splice those ribbons to other 200 μm fiber ribbons or 250 μm fiber ribbons using existing splicing machines that are set up to splice 250 μm fiber ribbons to 250 μm fiber ribbons.
Aspects of the present disclosure provide a novel handler assembly for use in conventional splicing machines that moves the fibers having a first nominal spacing to a different geometry to allow them to align with an opposing ribbon having a second nominal spacing. In accordance with certain aspects, the disclosure illustrates a handler assembly for moving the nominal spacing of the fibers of a 200 μm ribbon to align with the nominal spacing of the fibers in a 250 μm ribbon and methods of using the handler assembly with a conventional 250 μm splicer machine. Thus, typical installers can avoid the expense of specialty splicing machines by by swapping out a very small piece (the handler assembly) that is already considered interchangeable.
A method of splicing a first optical fiber ribbon having a first nominal spacing to a second optical fiber ribbon having a second nominal spacing different from the first nominal spacing includes thermally stripping an end portion of the first optical fiber ribbon to expose a first set of optical fibers and thermally stripping an end portion of the second optical fiber ribbon to expose a second set of optical fibers. The first set of optical fibers may then be placed into the first body of a first ribbon handler assembly and the second set of optical fibers placed into the second body of a second ribbon handler assembly. The first body of the first ribbon handler assembly comprises a first array of grooves defined in an upper surface of the first body for receiving the first set of optical fibers and the second body of the second ribbon handler assembly comprises a second array of grooves defined in an upper surface of the second body for receiving the second set of optical fibers. The first set of optical fibers has a nominal fiber size that is smaller than a nominal fiber size of the second set of optical fibers. Accordingly, the first array of grooves are tapered or flared to enlarge a nominal spacing of the first set of optical fibers to match a nominal spacing of the second set of optical fibers such that each exposed fiber of the first set of optical fibers aligns with a corresponding exposed fiber of the second set of optical fibers. Once the exposed fibers of the first set and the second set of fibers are secured in the respective ribbon handler assemblies, the ribbon handler assemblies may be individually placed into a splice machine for completion of the fusion splicing process.
Referring to
Although generally described herein for splicing of twelve fiber ribbons, both standard and rollable ribbons, the handler assembly 10 may be dimensioned to accommodate other ribbon sizes as well (e.g., 4, 6, 8, 12, 16, 24, 32 fiber ribbons). The body 12 may be comprised of a polymer material that is injection molded or machined to have the properties and dimensions described herein. However, the body 12 may be comprised of any suitable material.
The body 12 of the handler assembly 10 may be machined to seat a hinge pin 20 for rotatably mounting a first door 22 and a second door 24. As shown in
The array section of fiber grooves 26 may be formed to extend a predetermined length from one end of the body 12. The first door 22 may be sized to have a width W1 that substantially equals the longitudinal length of the array section of fiber grooves 26 formed in the ribbon channel 16. The second door 24 may have a width W2 that is wider than the width W1 of the first door 22 and is generally formed to abut or closely seat adjacent to the second door 24 when both doors are closed against the upper surface 14 of the body 12. The first door 22 and the second door 24 may be formed of a suitable metallic material such that each door is attracted to and couples with a magnet 30 that is seated in a magnet channel 32 formed in the upper surface 14 of the body 12. The magnet 30 sits substantially flush with the upper surface 14 of the body 12 such that when the first door 22 and/or the second door 24 is placed into a closed position (i.e., covering the ribbon channel 16), the free end of the respective door couples to and may be held closed by the magnet 30. As shown in
The handler assembly 10′ of
In accordance with aspects of the present disclosure, a method of splicing a first optical fiber ribbon having a first nominal spacing different from a second nominal spacing of the V-grooves in a splicing machine includes thermally stripping an end portion of the first optical fiber ribbon to expose a first set of optical fibers. This may be done by, for example, placing a 200 μm ribbon into the handler assembly such that a portion of the ribbon extends out of the end of handler assembly 10 (same method when using handler assembly 10′) housing the first door 22 and the second door 24 for a full length of a thermal stripper bed. The first door 22 and the second door 24 are closed and the coatings are stripped from the ribbon using the thermal stripper. The exposed fibers may be cleaned using known cleaning procedures.
The handler assembly with the 200 μm ribbon may be removed from the thermal stripper. With the exposed fibers of the ribbon extending from the handler assembly 10 or 10′, the second door is opened. With a finger lightly pressed against or near the closed small door, the ribbon may be retracted (i.e., pulled longitudinally away from the first door 22) such that the exposed and stripped fibers are pulled into the handler assembly 10 under the first door 22. When the center of the outer fibers, e.g., fibers 1 and 12 in a twelve-fiber ribbon, reach the their respective grooves 18 as the fibers are being slid along the tapered groove array section 16 machined into the handler body 12, all of the individual fibers will fall into their respective grooves 18 and be seated. The fibers are thus flared out into the nominal spacing required to fit into the V-grooves designed for the spacing of a 250 μm ribbon. As the fibers fall down into their respective grooves during this seating action, the first door 22 is permitted to fully close, which creates an audible click when the first door 22 seats against the magnet 30. Moreover, with a finger lightly pressed on or resting near the first door 22, a tactile sensation is created by the closing action when the fibers become seated in the individual grooves 18. Furthermore, the sudden move of the fibers from a parallel position to flared position provides a visual cue that the fibers are seated. Thus, three sensual feedback mechanisms are engaged to note that the fibers are flared and ready for cleaving.
With fibers still extending from the handler assembly 10, the handler assembly may be placed into a cleaver and the fibers cleaved to length for the mass fusion splice. The handler assembly 10 with the cleaved fibers may now be placed into a splice machine with a 250 μm V-groove spacing and spliced normally. The cleaved ends of the flared 200 μm fibers will proceed into each of their respective 250 μm spaced V grooves as the handler is placed into the handler base within the splice machine. In addition to using the pin holes 18 to seat the handler assembly 10 into the splice machine, other grooves or detents, for example, may be machined into the handler assembly 10 as appropriate to ensure proper seating of the handler assembly 10 in a particular splice machine.
To achieve attenuation performance, aspects of the present disclosure may include cables with high performing 200 um fibers, such as fibers with improved microbend performance as disclosed in U.S. Patent Application Ser. No. 62/341,369, which is incorporated herein.
The present inventions have thus been described with reference to the exemplary embodiments, which embodiments are intended to be illustrative of inventive concepts rather than limiting. Persons of ordinary skill in the art will appreciate that variations and modifications of the foregoing embodiments may be made without departing from the scope of the appended claims.
This application is a continuation of International Application No. PCT/US2020/050819 filed on Sep. 15, 2020, which claims priority to U.S. Provisional Application Ser. No. 62/902,132 filed on Sep. 18, 2019, the content of each of which is relied upon and incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62902132 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2020/050819 | Sep 2020 | US |
Child | 17684581 | US |