Ribbon winding preventing method and traverse drum

Information

  • Patent Grant
  • 6425546
  • Patent Number
    6,425,546
  • Date Filed
    Friday, October 13, 2000
    24 years ago
  • Date Issued
    Tuesday, July 30, 2002
    22 years ago
Abstract
Although many conventional ribbon winding preventing methods have substantially solved a ribbon winding problem in terms of the appearance of a package, there is still a large difference between a ribbon winding layer and the other layers in, for example, unwinding performance for fast unwinding during a postprocess. In a configuration for using a traverse groove 11 formed in a traverse drum 6 to traverse and wind a yarn into a package 3, the traverse drum 6 has a plurality of continuous traverse grooves 11 for different winding values formed therein. This configuration also has means 24 for switching a yarn path to determine which of the plurality of continuous traverse grooves 11 for different winding values used to traverse the yarn. Means for detecting a diameter at which ribbon winding may occur is also provided to effect such control that the winding number for the traverse drum 6 is changed when a package diameter is close to the ribbon winding diameter.
Description




FIELD OF THE INVENTION




The present invention relates to the configuration of a winding device in an automatic winder, a double twister, a false twister, or the like and the configuration of a traverse drum for use in the winding device, and in particular, to a technique for preventing ribbon winding during production of winding packages to improve yarn quality.




BACKGROUND OF THE INVENTION




In conventional textile machines, automatic winders are well known which comprise a traverse drum having a traverse groove formed in its peripheral surface and through which a yarn unwound from a spinning bobbin or the like is traversed to produce a winding package rotationally driven by the traverse drum in contact therewith. Double twisters and false twisters are also known which comprise a traverse drum having a traverse groove formed therein to traverse a yarn.




In addition, since the yarn traversed through the traverse groove is sequentially wound around the winding package, its package diameter increases gradually. When the package diameter and the diameter of the traverse drum have a certain relationship, the ribbon winding occurs on the winding package. The ribbon winding is a phenomenon in which the yarn wound on the winding package passes through substantially the same yarn path during a certain period, so that an extremely small number of intersections of the yarn are formed on the package. A winding package in which the ribbon winding has occurred may cause sluffing or yarn breakage by entanglement of yarn (a process called “latching”) during a postprocess when the yarn is unwound. Many methods for preventing ribbon winding on the winding package have been provided, including periodic braking of the drum or the package.




Although the above described ribbon winding preventing methods according to the prior art have substantially solved the ribbon winding problem in terms of the appearance of the package, there is still a large difference between ribboned layers and the other layers in, for example, winding performance for fast unwinding during the postprocess.




A method is thus well known which forms a shortened passage in part of the traverse groove formed in the traverse drum to change the winding value (number of winding) in order to enable two winding values for the traverse drum to be switched. This conventional configuration, however, requires the two winding values to be switched during a winding operation of an automatic winder or the like. For example, in a traverse drum with 2 winding values (2W) and 3 winding values (3W), the winding values is alternately changed for each traverse operation. Accordingly, complicated control is required and the yarn path must frequently be changed. Therefore, this method is not efficient.




The problems to be solved by the present invention have been described, and means for solving these problems will be explained below.




SUMMARY OF THE INVENTION




In the present invention for using a traverse groove formed in a traverse drum to traverse and wind a yarn into a package, the traverse drum has a plurality of continuous traverse grooves for different winding values formed therein.




The present invention has means for switching a yarn path to determine which of the plurality of continuous traverse grooves for different winding values is used to traverse the yarn.




In the present invention for using a traverse groove formed in a traverse drum to traverse and wind a yarn into a package, means for detecting a diameter of the package at which the ribbon winding occurs is provided to provide such control that the winding value for the traverse drum is changed near a diameter at which ribbon winding has occurred.




In the present invention, the traverse drum has a plurality of continuous traverse grooves formed therein and having different winding values.




In the present invention, the plurality of continuous traverse grooves are formed substantially completely independently.




In the present invention, a continuous traverse groove for 2 winding values and a continuous traverse groove for 2.5 winding values are formed.




In the present invention, a half or more of the plurality of continuous traverse grooves are independently formed and the remaining traverse grooves constitute a common passage.




In the present invention, a forward and backward portions of at least one continuous traverse groove have different winding values.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic view showing the configuration of an automatic winder comprising a ribbon winding preventing device according to the present invention.





FIG. 2

is a development of a traverse drum showing a yarn path for a normal operation.





FIG. 3

is a development of the traverse drum showing a yarn path for a winding operation which a ribbon winding occurs in a certain package diameter.





FIG. 4

shows the relationship between a package diameter and an occurrence of a ribbon winding.





FIG. 5A

shows ribbon winding with 1 winding value and





FIG. 5B

shows ribbon winding with 1.5 winding values.





FIG. 6

shows a sensor lever.





FIGS. 7A and 7B

are graphs comparing a standard traverse drum and the traverse drum according to the present invention in terms of performance, respectively.





FIG. 8

is a development of another embodiment of a traverse drum showing a yarn path for 2.5 winding values.





FIG. 9

is a development of further embodiment of a traverse drum showing a yarn path for 2.0 winding values.





FIG. 10

shows the relationship between the package diameter and the occurrence of a ribbon winding for the traverse drum in FIGS.


8


and


9


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Next, an embodiment of the present invention will be described with reference to the accompanying drawings.




First, the configuration of an automatic winder will be explained with reference to

FIG. 1

, as an embodiment using a ribbon winding preventing device according to the present invention.




An automatic winder


1


is a device for rewinding a yarn from a spinning bobbin


2


produced by a ring spinning machine or the like, into a package


3


.




The spinning bobbin


2


is conveyed on a machine base (not shown in the drawings) and placed at a predetermined position of the automatic winder


1


. A yarn end on the spinning bobbin


1


is captured and a yarn Y is transferred upward. The yarn Y is tensed by a tension device


4


, passed through a yarn defect detecting head


5


, traversed by a traverse drum


6


, and then wound into the package


3


.




In addition, a splicer


7


is disposed on a yarn path leading from the yarn defect detecting head


5


to the traverse drum


6


, to join the yarn after removal of a yarn defect if the defect has been found in the yarn Y or to join the yarn for a new spinning bobbin


2


that has replaced an empty bobbin. This allows several to several tens of spinning bobbins


2


to be wound into knot-less high quality packages


3


.




The traverse drum


6


has a continuous traverse groove


11


formed in a drum surface. The traverse groove


11


comprises a traverse forward passage


11


F for transferring the yarn leftward in

FIG. 1 and a

traverse backward passage


11


B for transferring the yarn rightward so that the yarn Y is traversed leftward through the traverse forward passage


11


F and then rightward through the traverse backward passage


11


B before returning to the original position. The yarn Y is sequentially traversed through the traverse groove


11


in this manner and then wound into the package


3


driven by the traverse drum


6


in surface contact therewith.




The traverse drum


6


according to the present invention has two different types of traverse grooves


11


for different winding values (hereafter referred to as “W” as appropriate) formed therein to prevent ribbon winding as described above.




One of these two types is the traverse groove


11


for a normal operation adapted to have the traverse forward passage


11


F and the traverse backward passage


11


B both for 2.5W.




The other is the traverse groove


11


for a ribbon winding diameter operation having 3W for the traverse forward passage


11


F and 2.5W for the traverse backward passage


11


B, and an average drum winding value constituted by two traverse (two forward and backward operations) is 2.75W.




First, the traverse groove


11


for the normal operation will be described with reference to FIG.


2


.




If the yarn Y is traversed using a point (a) in

FIG. 2

as a starting point, the yarn Y passes through the traverse groove


11


as the traverse drum


6


rotates, that is, it moves from the point (a) through a branching portion SP and a groove L


1


to a point (b). The yarn Y then moves from the point (b) to a point (c) and then from the point (c) to a point (d) to reach a right end of the traverse drum


6


. That is, the traverse groove


11


joining the points (a), (b), (c), (d) constitutes the traverse forward passage


11


F. Since the leftward movement of the yarn Y causes the traverse drum


6


to be rotated 2.5 times, a drum winding value for the traverse forward passage


11


F is 2.5W.




The yarn Y further passes through the traverse groove (or guide)


11


as the traverse drum


6


rotates, in this case, it moves from the point (d) to a point (e), then from the point (e) to a point (f), and then from the point (f) to the point (a) to reach the right end of the traverse drum


6


. That is, the traverse groove


11


joining the points (d), (e), (f), (a) constitutes the traverse backward passage


118


. Since the rightward movement of the yarn Y causes the traverse drum


6


to be rotated 2.5 times, a drum winding value for the traverse backward passage


118


is 2.5W.




As described above, during the normal operation, the traverse drum


6


has formed therein the traverse groove with the forward passage for 2.5W and the backward passage for 2.5W.




Next, the traverse groove


11


for the winding operation at a certain package diameter which a ribbon winding occurs will be described with reference to FIG.


3


.




If the yarn Y is traversed using a point (a) in

FIG. 3

as a starting point, the yarn Y passes through the traverse groove


11


as the traverse drum


6


rotates, that is, it moves from the point (a) through a branching portion SP and a groove L


2


to a point (g). The yarn Y then moves from the point (g) to a point (h) and then from the point (h) to a point (i) to reach a left end of the traverse drum


6


. That is, the traverse groove


11


joining the points (a), (g), (h), (i) constitutes the traverse forward passage


11


F. Since the leftward movement of the yarn Y causes the traverse drum


6


to be rotated 3 times, a drum winding value for the traverse forward passage


11


F is 3W.




The yarn Y further passes through the traverse guide


11


as the traverse drum


6


rotates, in this case, it moves from the point (i) to a point (j), then from the point (j) to a point (k), and then from the point (k) to the point (m) to reach a right end of the traverse drum


6


. That is, the traverse groove


11


joining the points (i), (j), (k), (m) constitutes the traverse backward passage


11


B. Since the rightward movement of the yarn Y causes the traverse drum


6


to be rotated 2.5 times, a drum winding value for the traverse backward passage


11


B is 2.5W. The yarn Y has thus performed one traverse (forward and backward operation), but further performs the second traverse operation without returning to the point (a).




The yarn Y is traversed leftward again from the point (m) and reaches a point (n), it then moves from the point (n) to a point (b), then from the point (b) to a point (c), and then from the point (c) to a point (d) to reach the left end of the traverse drum


6


. This forms the traverse forward passage


11


F for 3W joining the points (m), (n), (b), (c), (d) together. The yarn Y is further traversed rightward from the point (d) to move through the traverse backward passage


11


B for 2.5W composed of the points (d), (e), (f), (a) to reach the right end of the traverse drum before returning to the starting point (a).




As described above, during the winding operation at a certain package diameter which the ribbon winding occurs, the traverse drum


6


has formed therein the traverse groove


11


for two forward-and-backward operations comprising the forward passage for 3W, the backward passage for 2.5W, the forward passage for 3W, and the backward passage for 2.5W. The average drum winding value during the winding operation at a certain package diameter which the ribbon winding occurs is determined by (3W+2.5W+3W+2.5W)/4=2.75W.




As described above, according to the present invention, the traverse drum


6


has the plurality of (in this embodiment, two types of) continuous traverse grooves


11


for different drum winding values formed therein.




In this embodiment, the two continuous traverse grooves


11


for different winding values are not completely mutually independent, but half or more (most) of the traverse grooves


11


are mutually independent, while the remaining portions (a part) thereof constitute a common path.




The above described traverse grooves


11


for the normal operation and the winding operation at a certain package diameter which the ribbon winding occurs each branch at the separating portion SP, and the traverse groove


11


is switched at this separating portion SP by a pin cylinder


24


acting as means disposed in the yarn path between the yarn defect detecting head


5


and the traverse drum


6


for switching the yarn path. The pin cylinder


24


is configured so as to be turned on and off and when turned on, projects to a position A in

FIG. 1

to bend the yarn Y (the thus formed yarn path is denoted by Y


1


in FIG.


1


). This causes the yarn Y to be guided toward the groove L


1


for the normal operation with the forward and backward operations both for 2.5W. Alternatively, when turned off, the pin cylinder


24


is withdrawn to release the tension exerted on the yarn Y (the thus formed yarn path is denoted by Y


2


in FIG.


1


). The yarn Y is then guided toward the groove L


2


for the ribbon winding operation with an average winding value of 2.5W.




A ribbon winding preventing device and a controlling method therefor based on the above configuration will be explained.




During the normal operation, the yarn Y is sequentially wound into the winding package


3


through the traverse groove


11


for the above described normal operation. Then, when the package diameter R of the winding package


3


has a relation R=D×Wd/Wp (D: drum diameter of the traverse drum, Wd: traverse drum winding value, Wp: package winding value), ribbon winding may occur. If, for example, the drum diameter D=100 mm, Wd=2.5W, a ribbon winding package with Wp=1W will occur when the package diameter R is close to 250 mm. Likewise, a ribbon winding package with Wp=1.5W will occur when the package diameter R is close to 166 mm.





FIG. 4

shows the relationship between the package diameter R and the winding value of the ribbon winding. As shown in this figure, there are many ribbon winding packages such as those for 2W, 3W, . . . , but ribbon winding packages for 1W and 1.5W are particularly affected.

FIG. 5A

shows ribbon winding with 1W, while

FIG. 5B

shows ribbon winding with 1.5W, and the ribbon winding with 1W causes the yarn wound on the package to form only one yarn intersection thereon, whereas the ribbon winding with 1.5W causes the yarn to form only two yarn intersections thereon. Consequently, the yarn is free between one intersection and the next yarn intersection, so that sluffing is likely to occur during fast unwinding.




Thus, while the package diameter R is close to the diameters of the ribbon winding packages for 1W and 1.5W, the above described traverse groove


11


for the ribbon winding operation is used to shift the yarn path for the yarn wound on the package to prevent ribbon winding.




Although this embodiment is configured to prevent ribbon winding with 1W and 1.5W, configurations can be similarly provided for preventing ribbon winding with 0.75W, 1.25W, 1.75W, or 2W.





FIG. 6

shows the configuration of the means for detecting a diameter of a package at which ribbon winding may occur. A sensor lever


20


can rotationally move around a shaft


21


, and a cradle


22


for supporting the winding package


3


operates in conjunction with the sensor lever


20


and moves around the shaft


21


integrally therewith. The sensor lever


20


has ribbon winding diameter detecting holes


20


a,


20


b drilled at ends thereof and a proximity switch


23


disposed at a position lapping with a trajectory of the detecting holes


20




a,




20




b


which is formed as the sensor lever


20


moves rotationally. The proximity switch


23


is initially turned on and is turned off while the detecting holes


20




a


are passing by.




As the diameter of the winding package


3


increases, the cradle


22


moves rotationally, and once the package diameter R reaches the value of a ribbon winding diameter for 1.5W, the detecting hole


20




a


passes over the proximity switch


23


, which is then turned on. The pin cylinder


24


is then turned off to feed the yarn Y from the separating portion SP to the groove L


2


, so that the yarn Y is traversed through the traverse groove


11


for the ribbon winding operation. Then, once the detecting hole


20




a


has passed over the proximity switch


23


and moved away therefrom, the pin cylinder


24


is turned on again to return the operation to the normal one for a drum winding value of 2.5W. In

FIG. 4

, a graph F


1


shows the relationship between the package diameter R for a drum winding value of 2.5W and the package winding value W, and a graph F


2


shows the relationship between the package diameter R for a drum winding value of 2.75W and the package winding value W. As described above, the 2.5W operation is normally performed and the traverse drum is switched to the 2.75W operation when the package diameter is close to R


1


at where the 1.5W ribbon winding may occur. That is, the portions shown by the solid line on the graphs F


1


and F


2


indicate actual winding values for the traverse drum, indicating that the operation is switched to the 2.75W one only between a point (x


1


) and a point (x


2


) on the graph F


1


.




Similarly, when the package diameter R reaches a value for the 1W ribbon winding, the detecting hole


20




b


turns on the proximity switch


23


to switch to the ribbon winding operation. When the detecting hole


20




b


has passed by, the operation returns to the normal one. As shown in

FIG. 4

, the winding value for the traverse drum


6


is switched to 2.75W when the package diameter is closed to R


2


at which the 1W ribbon winding may occur (between a point (x


3


) and a point (x


4


)).




Thus, when the package diameter is close to the ribbon winding package diameter, the winding value for the traverse drum


6


is switched from 2.5W to 2.75W to shift the yarn path on the package to prevent ribbon winding.




In this manner, the present invention provides a configuration for using the traverse groove


11


to traverse and wind the yarn into the package


3


, wherein the traverse drum


6


has the plurality of continuous traverse grooves


11


for different winding values formed therein and wherein the pin cylinder


24


acting as the means for switching the yarn path is provided to determine which of the plurality of continuous traverse grooves


11


is used to traverse the yarn. Consequently, the pin cylinder


24


can be turned on and off to change the winding value for the traverse drum


6


, which is winding the yarn into the package.




In addition, since the means for detecting the ribbon winding occurring diameter which is composed of the sensor lever


20


, the proximity switch


23


, and other components is provided to change the winding value for the traverse drum


6


when the package diameter is close to the ribbon winding diameter, the winding value must be switched only when the package diameter is close to the ribbon winding diameter, thereby simplifying control to stabilize the winding operation. That is, if control is provided such that the winding value is constantly changed during the winding operation (regardless of whether or not the package diameter is close to the ribbon winding diameter) as in the prior art, complicated control is required and the yarn is not stably fed because the yarn path is frequently switched. The present invention, however, can prevent ribbon winding with the minimum required switching operation, thereby providing an efficient configuration.





FIG. 7

is a graph comparing a standard drum and the traverse drum according to the present invention in terms of performance. The standard drum has a constant drum winding value.

FIGS. 7A and 7B

are graphs representing the tension of the yarn observed when it is unwound at a high speed (for example, 1,600 m/min.) near a 1W ribbon winding layer;

FIG. 7A

shows a package obtained by the standard drum, while

FIG. 7B

shows a package obtained by the traverse drum


6


according to the present invention. With the standard drum, the yarn breakage caused by latching occurred


17


times in the ribbon winding layer. On the other hand, with the traverse drum


6


according to the present invention, no yarn breakage caused by latching occurred.




In this embodiment, the yarn is wound at a drum winding value of 2.5W during the normal operation, whereas it is wound at a drum winding value of 2.75W during the winding operation at a certain package diameter which the ribbon winding occurs, but conversely, the normal operation may be based on 2.75W, which is then switched to 2.5W for the winding operation at a certain package diameter which the ribbon winding occurs. The latter case provides similar effects.




In addition, in this embodiment, the traverse drum


6


has the traverse groove


11


for the average 2.75W in addition to the traverse groove


11


based on 2.5W, but it may have a traverse groove for 3W in addition to a traverse groove based on 2W (2W×2W forward and backward operations) so that the yarn is wound at a drum winding value of 2W during the normal operation whereas it is wound with a switching operation 3W-2W-3W-2W . . . (that is, an average drum winding value of 2.5W) during the ribbon winding operation, thereby preventing ribbon winding.




Additionally, as the traverse drum having the plurality-of continuous traverse grooves for different winding values formed therein as described above, a traverse drum may be configured which has a traverse groove with a forward and backward paths both for 2.5W and a traverse groove with a forward and backward paths both for 2.0W.




For example, a traverse drum


16


shown in

FIGS. 8 and 9

comprises a first traverse groove


17


having a first traverse forward path


17


F and a first traverse backward path


17


B both configured for 2.5W and a second traverse groove


18


having a second traverse forward path


18


F and a second traverse backward path


18


B both configured for 2.0W.




In this embodiment, the two continuous traverse grooves


17


,


18


for different winding values are formed completely independently.




First, the first traverse groove


17


through which the yarn Y is traversed at 2.5W will be explained with reference to FIG.


8


.




If the yarn Y is traversed using a right-end point (p) as a starting point, the yarn Y passes through the first traverse groove


17


as the traverse drum


16


rotates, that is, it moves from the point (p) through a separating point (sp) to a point (q). The yarn Y then moves from the point (q) to a point (r), then from the point (r) to a point (s), and then from the point (s) to a point (t) to reach a left end of the traverse drum


16


.




That is, the first traverse groove


17


joining the point (p) and point (t) through the separating point (sp) and the points (q), (r), (s) constitutes the traverse forward path


17


F. Since the leftward movement of the yarn Y from the point (p) to the point (t) causes the traverse drum


16


to be rotated 2.5 times, a drum winding value for the traverse forward path


17


F is 2.5W.




The yarn Y further passes through the first traverse groove


17


as the traverse drum


16


rotates, in this case, it moves from the point (t) to a point (u), then from the point (u) to a point (v), and then from the point (v) to the point (p) through the confluence (cf) to reach the right end of the traverse drum


16


. That is, the first traverse groove


17


joining the points (t), (u), (v), (cf), (p) constitutes the traverse backward path


17


B. Since the rightward movement of the yarn Y causes the traverse drum


16


to be rotated 2.5 times, a drum winding value for the traverse backward path


17


B is 2.5W.




As described above, the traverse forward path


17


F of the first traverse groove


17


is adapted for 2.5W, while the traverse backward path


17


B of the first traverse groove


17


is adapted for 2.5W.




Next, the second traverse groove


18


through which the yarn Y is traversed at 2.0W will be explained with reference to FIG.


9


.




If the yarn Y is traversed using the right-end point (p) as a starting point, the yarn Y passes through the second traverse groove


18


as the traverse drum


16


rotates, that is, it moves from the point (p) through the separating portion (sp) to a point (x) shown at the lower end. The yarn Y then moves from a point (x) shown at the upper end to a point (y) shown at the lower end and then from a point (y) shown at the upper end to a point (z) to reach a left end of the traverse drum


16


.




That is, the second traverse groove


18


joining the points (p) and (z) through the separating point (sp) and the points (x), (y) constitutes the traverse forward path


18


F. Since the leftward movement of the yarn Y from the point (p) to the point (z) causes the traverse drum


16


to be rotated twice, a drum winding value for the traverse forward path


18


F is 2.0W.




The yarn Y further passes through the second traverse groove


18


as the traverse drum


16


rotates, in this case, it moves from the point (z) to the point (y) shown at the lower end, then from the point (y) shown at the upper end to the point (x) shown at the lower end, and then from the point (x) shown at the upper end to the point (p) through the confluence (cf) to reach the right end of the traverse drum


16


. That is, the second traverse groove


18


joining the points (z), (y), (x), (cf), (p) constitutes the traverse forward path


18


B. Since the rightward movement of the yarn Y causes the traverse drum


16


to be rotated twice, a drum winding value for the traverse backward path


18


B is 2.0W.




As described above, the traverse forward path


18


F of the second traverse groove


18


is adapted for 2.0W, while the traverse backward path


18


B of the second traverse groove


18


is adapted for 2.0W.




The first traverse groove


17


and the second traverse groove


18


in the traverse drum


16


do not substantially have a common path and are formed as substantially perfectly independent paths.




In this manner, the traverse drum


16


has the plurality of (in this embodiment, two types of) independent traverse grooves, that is, the first traverse groove


17


and the second traverse groove


18


, which have different winding values. Like the above described traverse drum


6


, the traverse drum


16


allows the path through which the yarn Y is traversed to be switched at the separating point (sp) to the first traverse groove


17


or the second traverse groove


18


.





FIG. 10

shows the relationship between the package diameter R and the winding value W of the ribbon winding for the traverse drum


16


. A graph F


3


shows the relationship between the package diameter R and the package winding value W with the second traverse groove


18


for 2.0W, whereas a graph F


4


shows the relationship between the package diameter R and the package winding value W with the first traverse groove


17


for 2.5W.




When the yarn is wound mainly at 2.0W, the winding value is switched to 2.5W when the package diameter is close to R


3


at which the 1.5W ribbon winding may occur (between points (x


5


) and (x


6


)) and when the package diameter is close to R


4


at which the 1W ribbon winding may occur (between points (x


7


) and (x


8


)), while 2.0W is used in the other areas, as shown in the graph F


3


, thereby preventing ribbon winding.




Alternatively, when the yarn is wound mainly at 2.5W, the wining value is switched to 2.0W when the package diameter is close to R


5


at which the 1W ribbon winding may occur (between points (x


9


) and (x


10


)), while 2.5W is used in the other areas, as shown in the graph F


4


, thereby preventing ribbon winding.




That is, the present traverse drum


16


enables both winding mainly using 2.0W and winding mainly using 2.5W.




As described above, when the traverse drum


16


is configured so as to have the plurality of continuous independent traverse grooves for different winding values such as 2.0W and 2.5W, the one type of traverse drum


16


can wind the yarn using the plurality of winding values while preventing ribbon winding. As a result, the traverse drum


16


can be generalized.




A package into which the yarn has been wound at 2.0W has a smaller winding density, so that the yarn Y can be dyed while in the form of the package, thereby enabling faster unwinding than in the case of 2.5W or 2.75W.




Since the present invention is configured as described above, it provides the following effects.




In a configuration for using a traverse groove formed in a traverse drum to traverse and wind a yarn into a package, the traverse drum has a plurality of continuous traverse grooves for different winding values formed therein. Consequently, the winding value for the traverse drum can be selected from a range of values.




Means for switching a yarn guide is provided to determine which of the plurality of continuous traverse grooves for different winding values is used to traverse the yarn. As a result, the winding value for the traverse drum can be changed during a winding operation by an automatic winder or the like.




In a configuration for using a traverse groove formed in a traverse drum to traverse and wind a yarn into a package, means for detecting a package diameter at which ribbon winding may occur is provided to effect such control that the winding value for the traverse drum is changed when a package diameter is close to the ribbon winding diameter. Consequently, the winding value must be switched only when the package diameter is close to the ribbon winding diameter, thereby simplifying control to stabilize the winding operation. Additionally, ribbon winding is prevented with the minimum required switching operation, thereby providing an efficient configuration.




The traverse drum has a plurality of continuous traverse grooves formed therein and having different winding values. Accordingly, the one type of traverse drum can wind the yarn using different winding values and can wind the yarn using a plurality of winding values while preventing ribbon winding. As a result, the traverse drum can be generalized.




The plurality of continuous traverse grooves are formed substantially completely independently. Consequently, the plurality of continuous traverse grooves has no common path to allow the single drum to wind the yarn at substantially completely different winding values.




A continuous traverse groove for 2 winding values and a continuous traverse groove for 2.5 winding values are formed. As a result, the traverse drum can be used for dyeing winding and can be generalized.




Half or more of the plurality of continuous traverse grooves are independently formed and a remaining part of the traverse grooves constitutes a common path. Consequently, the amount of traverse grooves can be reduced to facilitate manufacturing of the traverse drum.




A forward and backward portions of at least one continuous traverse groove have different winding values. As a result, ribbon winding can be more effectively prevented.



Claims
  • 1. A traverse drum including a plurality of continuous traverse grooves formed therein and having different winding values,characterized in that the plurality of continuous traverse grooves are formed substantially completely independently.
  • 2. A traverse drum according to claim 1 characterized in that a continuous traverse groove with a 2 winding value and a continuous traverse groove with a 2.5 winding value are formed.
  • 3. A traverse drum according to claim 2 characterized in that a forward and backward portions of at least one continuous traverse groove have different winding values.
  • 4. The traverse drum according to claim 1, wherein at least two of the continuous traverse grooves intersect at a branching/separating portion.
  • 5. A traverse drum including a plurality of continuous traverse grooves formed therein and having different winding values,characterized in that half or more of each of the plurality of continuous traverse grooves is independently formed and a remaining part thereof constitutes a common path.
  • 6. A traverse drum according to claim 1 or claim 5 characterized in that a forward and backward portions of at least one continuous traverse groove have different winding values.
  • 7. A ribbon winding-preventing method of traversing and winding a yarn into a package, the method comprising:providing a traverse drum comprising a plurality of continuous traverse grooves formed substantially completely independently; detecting a package diameter; and changing a winding value of the traverse drum when the package diameter is close to a ribbon winding diameter.
Priority Claims (2)
Number Date Country Kind
11-293979 Oct 1999 JP
2000-251051 Aug 2000 JP
US Referenced Citations (5)
Number Name Date Kind
3690579 Porter et al. Sep 1972 A
4767071 Hirai Aug 1988 A
5044571 Ohashi Sep 1991 A
5090633 Ohashi Feb 1992 A
5857638 Hermanns et al. Jan 1999 A