A more complete and thorough understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
Preferred embodiments and their advantages are best understood by reference to
In one aspect, a machine-to-machine (M2M) network for remote field assets is described. M2M network 100 includes a collection of remotely located field assets 102, 103 in communication with a transaction processing server 110. Transaction processing server 110 communicates with a field assets 102 via a wide area wireless network or via local wireless networks using a hand held data processing device as an intermediary. Some field assets, including field assets 103, may lack wireless WAN connectivity and may, therefore, communicate with transaction processing server 110 through an intermediate field asset such as field asset 102-1. In some embodiments, field assets 102-1 may lack built-in resources for local wireless communication. In such embodiments, field asset 102-1 may communicate with hand held device 130 through the use of wireless adapter (not shown in
Field assets 102 and 103 are exemplified by vending machines in which transactions likely include the sale of consumer goods stocked in the vending machine. In some embodiments, field asset 102 or 103 is an MDB compliant vending machine that includes a vending machine controller (VMC) as the master of an industry standard MDB bus to which one or more peripheral devices are connected. In addition to conventional peripheral devices such as bill validators and coin mechanisms, a field asset may include hardware, firmware, and/or software that implements a platform for providing value added functionality to the vending machine or other field asset. This collection of hardware, software, and/or firmware is referred to herein as an extended function adapter (EFA).
The EFA supports one or more beneficial capabilities that facilitate automated vending machine management. The EFA may, for example, include a audit agent that includes the capacity to perform DEX polling and to store and time stamp the captured DEX data structures.
Referring now to the drawings,
Although many different types of field assets exist, embodiments are described herein in the context of a vending machine class of field assets. Vending machines are ubiquitous machines historically used as an unmanned source of perishable and nonperishable consumer products including canned and bottled drink products, snack foods, and so forth. Details of one embodiment of a field asset are described below with respect to
In the embodiment depicted in
Field asset 102-1 is depicted as being capable of communicating wirelessly with a hand held device 130 via a local wireless network 140 or directly with transaction processing server 110 via wireless net 120. Field asset 102-1 may include integrated wireless functionality, i.e., wireless hardware, firmware, and/or software to for communicating wirelessly with hand held device 130. Alternatively, field asset 102-1 may communicate wirelessly with hand held device 130 through an intervening adapter such as a wireless adapter that plugs into a DEX port of field asset 102-1. Field assets 103 as depicted in
The hand held device 130 is shown as connecting to transaction server 110 using wireless network 120, sometimes referred to herein as global wireless network to distinguish local wireless network 140. Local wireless network 140 may be implemented using any of a variety of short range wireless technologies including as perhaps the most prominent examples, Bluetooth and WiFi (e.g., IEEE 802.11b, IEEE 802.11g, and their derivatives).
In the case of local wireless communication, an operator conveys hand held device 130 to a location that is in close proximity to a field asset 102. The field asset 102 and hand held 130 establish a local wireless signal enabling communication between the two. After establishing a local wireless communication channel, field asset 102 and hand held 130 exchange data or information. Field asset 102 may, as an example, transmit sales transaction information to hand held 130.
Transfer of information from field asset 102-1 to transaction server 110 could be achieved by transferring the data from field asset 102-1 to hand held 130 using local wireless network 140, transporting hand held 130 to a location in proximity to transaction server 110, and transmitting the information in hand held 130 to interaction server 110 via another local wireless (not depicted) transfer. In still another alternative, information may be passed from field asset 102-1 to hand held 130 and/or from hand held 130 to transaction server 110 using a cable or other wired connection, possibly to enhance the security of confidential information.
Transaction server 110 may be implemented as a set of one or more server class computers operable to process many transactions. Transaction server 110 may include, as an example, a database management application (e.g., Oracle, DB2, etc.)
A desktop data processing system 170 is depicted in
As depicted in
The type of information conveyed or otherwise exchanged between field assets 102 and interaction server 110 varies depending upon the manner in which and the purpose for which field asset 102 is implemented, but the information most likely includes information about transactions that occur or have occurred using field assets 102. The transaction information referred to can include, as examples, information about when a transaction occurs and other transaction details, for example, what product or combination of products were purchased, what consumer or customer purchased the product (if known), the dollar amount of the purchase, the amount of time required to complete the purchase, the manner of payment, and other information that may be useful to vending machine operators and/or the providers of goods sold through field assets 102.
Referring now to
Referring now to
In the depicted embodiment, field asset 102 is an MDB compliant machine or device that includes a VMC 210 connected to an MDB 211, to which a plurality of standard peripheral devices are connected. As shown in
MDB 211 is compliant with the Multi-Drop Bus/Internal Communication Protocol (the MDB protocol) maintained by the National Automatic Marketing Association (NAMA). The MDB protocol is an Interface Standard that allows the various components of a vending machine to communicate to the VMC. The MDB protocol determines the way in which the VMC learns what coins were accepted by the Coin Mechanism, what bills were accepted by the Bill Validator, and how much credit is available through the Card Reader. It is a way for the VMC to “tell” the Coin Mechanism how much change to pay out or to “tell” the card reader how much credit to return to the card.
Unlike many shared bus protocols, the MDB protocol defines the VMC as the one and only master of the MDB and all other peripherals as slaves. The VMC can address packets to any of the peripheral devices, but peripheral devices cannot communicate with each other and only transmit packets to the VMC in response to receiving a packet from the VMC. Also, as suggested previously, MDB is a polling-based protocol. A significant percentage of MDB traffic consists of polling packets issued by the VMC and acknowledge packets from the peripheral devices. In most shared bus architectures, e.g., Ethernet and PCI, devices can act as masters or slaves and polling is not an inherent feature of the architecture.
EFA 200, as its name suggests, includes application extensions that enhance the features of field asset 102. In conjunction with VMC 210, EFA 200 may include, as examples, an Audit Agent 302 suitable for periodically retrieving DEX data 220 from VMC 210 to create a dynamic view of DEX data, a cashless agent 330 suitable for facilitating cashless transactions, and a rich content agent (RCA) 340 for managing and displaying rich content messages to consumers. EFA 200 may also include wireless communication functionality 360 including wireless communication hardware, firmware, and/or software for wireless communication via wireless network 120 (
RCA 340 operates in conjunction with a rich content display 350 connected to EFA 200 to present rich content messages to consumers and potential consumers. Rich content display 350 is preferably any analog or digital display device having QVGA resolution or better and capable of displaying still and moving images including movies and movie clips. Although rich content display 350 is preferably a liquid crystal display (LCD) device desirable for its relatively small dimensional requirements, display 350 may also be a cathode ray tube (CRT) device, a plasma display panel (PDP) device, a surface conduction electron emitter display (SED), and the like.
RCA 340 preferably coordinates the presentation of rich content messages to consumers and potential consumers based on the state of the field asset. The field asset state may include a procedural state indicative of, for example, the current stage in a sequence of transaction stages, an environmental state, indicative of, for example, time and geographical information, and a product state indicative of, for example, the current inventory of products and products prices contained in the field asset. RCA 340 may receive input from one or more other agents on EFA 200. Input from the other EFA agents may partially or completely indicate all or a portion of the state of the field asset.
As indicated above, RCA 340 encompasses content presentation management based, at least under some circumstances, on the state of a vending machine or other field asset. For purpose of the following discussion, a field asset's state is divided roughly into two components referred to herein as its procedural state and its substantive state. The procedural state of a field asset such as a vending machine that engages in consumer transactions may refer to the current stage in a sequence of transaction stages. From this perspective, a field asset may be thought of as a state machine and represented by a conventional state diagram. A simplified state diagram showing selected states of a field asset such as the vending machine depicted in
If, for example, a consumer inserts coins into a coin mechanism, field asset 102 is depicted as transitioning from idle stage 402 to a coin detected stage 404, which may represent the first in a sequence (not depicted) of transaction stages applicable to coin-based transactions. The coin-based transaction sequence may include, just as examples, a coin detection stage, a coin verification stage, a coin summation stage, a transaction pending stage, a product delivered stage, and a change return stage. Similarly, field asset 102 may include transition to a bill accepted stage 406 representing the first stage in a sequence of stages (not depicted) applicable to bill-based transactions when or one or more dollar bills (or other denominations) are received by a bill acceptor/validator.
As depicted in
As depicted in
Returning to the simplified transaction state diagram of
The substantive state of field asset 102 may encompass parameters or characteristics that are independent of an asset's procedural state. A field asset's physical location, for example, is a characteristic that does not dependent on a transaction stage sequence, but which may nevertheless be desirable to know for purposes of presenting meaningful or targeted rich media messages to a consumer or potential consumer. For example, while it might be desirable to promote field asset products using by conveying an association between the products and a particular athletic team, conveying the correct association is dramatically dependent upon the location of the field asset. Imagine, for example, the efficacy of a University of Texas Longhorn based promotion presented on a field asset in College Station, Tex. or Norman, Okla. or a New York Yankees promotion playing on a vending machine in South Boston. Thus, one aspect of a field asset's location or geography state is the political or regional division in which the field asset is located. Another aspect to the location state of a field asset could have to do with the function of the building in which the field asset is located. Thus, for example, a vending machine owner or manager may sell third party ads for display on the display device of a field asset. The potential purchases of this third party advertising time may dependent on where the field asset is located. A field asset located in or near the show room of a new car dealership for example might beneficially display advertisements or other rich media messages for the types of automobiles sold by the dealership.
In addition to geographical state, a field asset generally and a vending machine in particular has other state attributes including its inventory state, its pricing state, and an environmental state. A field asset's inventory state refers to the quantity and selection of the products remaining in the field asset at any given point in time. Inventory state may be useful in managing rich media content to avoid, for example, displaying a promotion for a product that is currently out of stock.
Pricing state refers to the prices that each item of inventory is currently being offered at. Pricing state may be useful in managing rich media presentation by enabling, as an example, a field asset to determine a discount level to use when initiating a promotion or inventive program. If, for example, it is desired to promote an item as being temporarily sold at a specified discount, the pricing state may facilitate the use of discount percentages that are easily incorporated into the pricing structure of the machine. It would not, for example, make sense to promote a 75 cent can of soda at a 50% discount.
A field asset's environmental state may include the date and time, the external temperature and humidity, the proximity to the nearest other field asset, and essentially any other condition or characteristic that might be detectable by the field asset and potentially useful in managing rich media content presentation. Field assets may wish, for example, to promote a different mix of products at night than during the day time, or to shut down completely during one or the other. Similarly, weather conditions may be monitored and used to control rich content messages so that ice cream bars and popsicles are emphasized during hot weather while chicken soup and hot chocolate are emphasized during a blizzard.
Turning to
In the preferred embodiment, rich content agent 410 encompasses the ability to detect a procedural and a substantive state of the field asset and to use the detected state as control inputs for managing the presentation of rich content to consumers and potential consumers. In the preferred embodiment, RCA 340 controls media presentation using a predefined, but extensible set of procedural and substantive characteristics. The developer of RCA 340 may, for example, define an interface or structure for controlling rich media presentation and make the structure or interface publicly available so that third party developers can develop the rich media content itself as well as a set of rules indicating how to manage and display the rich media content with the context of the defined procedural and substantive state of the field asset.
In some embodiments, rich media content management and presentation may be implemented as a set or sequence of computer executable instructions (software) stored on a computer readable medium. The medium may be a nonvolatile medium such as a hard disk, optical disk, or the like. During execution, all or portions of the software may be stored in a volatile storage medium such as a system memory (SRAM), cache memory (DRAM), etc. When executed by a suitable general purpose or application specific microprocessor, the software instructions produce a computer implemented method such as the content management method 600 conceptually represented in the flow diagram of
Method 600 as depicted in
In block 606, method 600 depicts determining a content management action based at least in part on the procedural state data 602 and the substantive state data 604. In some embodiments, the content management action includes a determination of which, if any, rich media files (i.e., rich media content) are to be presented to the consumer via rich media display device 350. Following the determination of a media content action in block 606, method 600 includes managing by taking the content action determined in block 606 and displaying the rich content on the rich content display 350.
Encompassed within method 600 is the concept of managing the presentation of rich media content via the field asset based on any of a set of characteristics and/or parameters that are detectable by the field asset and useful or potentially useful in controlling the presentation of rich media content to a consumer. For example, encompassed within the concept of detecting procedural state is the information that is known at each stage in a procedural state. Thus, the actions that may be taken at any point in a procedural state may be influenced by or otherwise managed based on any of all information that is available to the field asset at that point.
In the context of cashless transactions, for example, the cashless form of payment generally conveys a greater degree of consumer identity than other forms of payment and this identity information may be suitable for use in employing targeted rich content messaging. If a cashless user's identity is known to a particular field asset, perhaps based upon a transaction cache or other form of database that field asset 102 may retain, rich content presentation may be targeted based in part on the consumer's past purchasing activity.
Consumer identity information enables a wealth of promotional programs that integrate well with the ability to provide rich media content. Loyalty programs can be implemented once a consumer's identity is known. Loyalty program could include traditional “frequent consumer” type of rewards in the form of points that may later be redeemed for discounted or free products. In addition, loyalty programs could be implemented using “perks” in the form of interactive content that is not provided to “unregistered” consumers. For example, a loyal consumer with a demonstrated preference for a particular brand of soft drink may be invited to participate in an election or other survey associated with a television program or other event. Talent search programs that rely on viewer voting, for example, are often sponsored by the producers of consumable products. A loyal purchaser could be invited to participate in a talent search vote at the end of a transaction while the rich content display 350 is utilized to display rich media samples of the various contestants.
Identification of consumer also enables expansion of the ability to implement sweepstakes or contents through vending machine transactions. For example, the ability to identify a consumer enables a program in which winners of a contest or sweepstakes are awarded with a prize that is delivered via the web such as a music or video download. In this manner, for example, a recording artist could release a new song through a channel of field assets simultaneously with or even before a conventional web or record store release.
Even if a consumer is not located in a transaction database that is available to the field asset, the cashless agent or other application running on EFA 200 may be able to detect, or inquire about, demographic data such as the consumers gender and age, that might be used to influence presentation of messaging.
Similarly, substantive state information may be detected and used to implement various promotional efforts. Time and date information, for example, may be used to control the timing of promotional programs, new product introductions, incentive programs, and sweepstakes or contests. Moreover, as indicated previously, the graphical advertising that is presented to a user may be influenced by the substantive state so that “internal” advertisements, which are advertisements for products sold in the vending machine, and external advertisements are timely.
As suggested by the preceding paragraphs, the ability to manage rich media content meaningfully in a field asset environment to present targeted rich media messages to consumers and the ability to present rich media content using rich media hardware installed in the field assets are the cornerstones that enable a wide range of marketing and customer relation opportunities.
Referring now to
RCA 340 as shown in
Thus, XML Manifest provides a mapping between procedural or operational directives and rules for managing the media. In the exemplary XML file listed in Appendix “A” for example, the XML file maps the procedural directive “ID” to a media rule that informs CMA 702 which movie clip to play and which text messages, if any, to overlay on the movie clip. CMA 702 retrieves the “rule” indicated in XML Manifest 704 and uses the rule to send a message to rich content player 710. Rich content player 710 in turn responds to receipt of a message from CMA 702 by retrieving and executing, i.e., playing, the movie clip or other rich media content file stored in rich media content files 712.
In this manner, XML Manifest 704 specifies the manner in which CMA 702 responds to directives and other information to control the messages it sends to rich content player 710 and thereby controls the content that is played.
Media player 710 may include elements of commercially distributed rich content players including, as examples, Adobe's Flash® player, Apple's Quicktime® player, and the like. RCA 340 as depicted in
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alternations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
<!--The Movie Loop defines Rich Content Movies (e.g., SWF) that will play in succession. The loop will run continuously until interrupted with a consumer event, i.e. a card swipe. Movies will run to completion and then move onto the next movie unless that movie's rule prevents it from running. If a consumer event prompt an interrupt, the loop will start at the beginning based on the “restart” rule. If “restart” is true, then the movie loop will start at the beginning each time the loop replays following a consumer event. If “restart is false, then the movie loop will continue playing where it left off.
Movies to be played in the movie loop are defined within the MovieLoop tag. Key “loopnode” defines the attributes of a movie to play, starting with the movie's filename. Also note that the Rich Content file extension is not included and no file paths are provided as the content manager will use discrete path for the movies (within the /movies directory). A specific movie can be listed within the loop more then one time and in any order
“startdate” earliest date a movie will start to play (start at midnight). If no start date is provided, it will play immediately.
“enddate” last date a movie will paly (to midnight).
<!--The Skin element allows a skin movie to be shown on the display. Skins can be enabled/disabled on the fly as each specific stage is shown, but this element drives the skin setting at startup and during the movie loop. It is the “master setting” for the content. Skins have three attributes:
“setting” this is the setting at content start. “on”/“off” are the two allowed settings. The system defaults to on.
“textfield1” skins have maximum of two optional text variable fields. These fields are set as attributes. “textfield1” is the first text field
“textfield2” this is the second optional text field
-->
<TopSkin setting=“on” textfield1=“Cash Only” textfield2=“Thank You”></Topskin>
<!--Fade Speed Element is used to drive transitions between movies and stages. From movie to movie the transition is driven through a Rich Content fade. Fade speeds (framerate) can be set using two element attributes. Note that setting these two values is not required, as they do have default settings.
“stageFadeSpeed” sets the fade speed between stage transitions. Default: 10
“movieFadeSpeed sets the fade speed between stage transitions. Default: 5
The higher the value, the higher the speed, and thus the higher the frame rate. These values must be a divisor of 100.
<!--Promotions define lists of promotions, in the form of movie overlays, that are presented during the consumer's “make selection” stage. This can be in the form of featured products, which are different movies (promotions) that are shown to the consumer while the “make selection” stage (MS, see below) is being presented. While the MS stage has its own corresponding movie that plays during the stage, the featured products movie is a semi-transparent overlay to the stage movie. An example of this might be to present a specific featured brand for the month, or a new product rollout. As the content manager is tied into the entire device system, rule can be applied. For example if a product is out-of-stock, why bother featuring it to the consumer.
Note that promo can be shown without it being mapped to a specific product. For example, you might want a promo that presents Mycoke.Com information (see example below). In this case, the product-based attributes do not apply.
<!--Stage Directives are used to map cashless stages to a movies. Cashless stages are mapped to movies via directives, which are used by the internal systems to direct the content manager to move to a next stage (and what the stage might be).
If a text field (defined by attribute “tfn, in which n is 1 through 4), is wrapped with an underscore, _underscore_, then it is a variable rather then fixed text. The following text field variables exist:
A stage can also support questions, if appropriate. Example: Multivend change, which provides the use a chance to make another purchase without swiping their credit card. In the case of a question, the stage information is the same, except the attributes are well defined:
This application is related to and claims the benefit of Provisional Application No. 60/825,541, filed Sep. 13, 2006, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60825541 | Sep 2006 | US |