RIDE-ON AND PUSH TOY FOR STORAGE AND PICKING UP SMALL OBJECTS ON PLANE SURFACE

Information

  • Patent Application
  • 20180264372
  • Publication Number
    20180264372
  • Date Filed
    March 14, 2017
    7 years ago
  • Date Published
    September 20, 2018
    6 years ago
  • Inventors
    • Bernbaum; Tova (Brooklyn, NY, US)
    • Leider; Eliezer (Brooklyn, NY, US)
Abstract
A ride-on, wheeled toy picks up small objects from a plane surface. The ride-on toy can be driven by the feet of a child sitting on the toy or by the hands of a person standing behind the toy. The pick-up mechanism of the toy is a continuous gear and belt system with flexible sweeping fins. The pick-up mechanism can be activated or deactivated by a push button or switch.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present subject matter being disclosed by the Inventors relates generally to the field of ride-on and push toys for children, toy storage, and more specifically to a ride-on and push toy to pick up small objects lying on a plane surface.


Description of Related Art

To encourage children to pick up toys or small playing objects scattered on the floor after their playing is not an easy task because children soon feel bored from the repetitively bending down, picking up the toys, going to the storage bin, throwing them into the storage bin, and so on. Especially, when the small objects or toys are tiny, such as blocks, Lego® bricks, small figures, small marbles, or beads, the efforts to pick them up are laborious and tedious.


Although electrical vacuum or floor sweeper is generally used to clean up small litters like dust, pieces of small paper clip, or cookie crumbles on the floor, toys or small playing objects are not suitable to be cleaned up by the electrical vacuum or floor sweeper. The electrical vacuum will often be clogged by the irregular shapes of the toys or the size of the playing small objects larger than the vacuum suction head. Also, the vacuum will suck up dust and the toys into the vacuum at the same time, which will smear the toys with the dust vacuumed. Same issues occur when a floor sweeper is used to pick up the small playing objects or toys on the plane surface.


Therefore, there is a need to help parents or children to save effort in cleaning up the toys or small playing objects lying on the plane surface, like carpet or hardwood floors, while keeping the cleaning up work enjoyable. Also, there is a need to have the cleanup task performed in an efficient way to save time and efforts.


SUMMARY Of THE INVENTION

The subject being disclosed by the Inventors provides a children's ride-on and push toy to pick up small objects lying on a plane surface. The present subject matter being disclosed by the Inventors can be hidden by a child, but also can be turned into a device, like a floor sweeper or manual vacuum, which an adult or a child can push it to pick up small objects lying on the floor or similar plane surface. The present subject matter being disclosed by the Inventors provides a retrievable storage space for temporarily storing the small objects swept into the body of the toy and later emptied to a toy storage bin. The object of the subject being disclosed by the Inventors can be, for example, in an appearance of an animated form, such as an animal, so that the child sitting on it will enjoy the ride and will imagine that the animated animal toy eats up the toys or small playing objects to be cleaned up


The present subject matter being disclosed by the Inventors may include a pickup mechanism that can be activated for sweeping or picking up small objects from a plane surface into the storage space of the toy while the toy is used to pick up small objects on a plane surface but it also can be deactivated while the toy is used for the ride-on environment only. One of the embodiments of the sweeping mechanism may include a continuous moving gear-belt system with flexible pick-up pins, or similar suitable impeller that provides sufficient force to sweep the object but flexible enough to pass objects that are too big or too heavy to be swept into the storage space. The appearance of the present subject matter being disclosed by the Inventors can be in animated form, for example, as animals, transportation tools, or cartoon figures to enhance the enjoyment of the riding.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a perspective view of one of the embodiment of the present subject matter being disclosed by the Inventors.



FIG. 2 shows perspective views of the ride-on body, for example, in an animated form.



FIG. 3 is a perspective view of one of the embodiment of the mechanical structure of the sweeping mechanism when it is assembled with front wheels, a deactivation button or switch, the faction driving wheels, the pickup fins.



FIG. 4 shows of the schematic view of an example of the embodiments of the sweeping mechanism that may include the case, the gear sets, and the friction drive assembly, the belt, and the pickup fins.



FIG. 5 shows the schematic view of an example of the embodiments of the ratchet system



FIG. 6 is a perspective view of one of the embodiment of the friction drive assembly.



FIG. 7 shows the schematic view of an example of the embodiments of the assembly of the sweeping mechanism of the second sprocket gear, the deactivation button or switch, the friction drive assembly, the ratcheting wheel, and the case.



FIG. 8 shows an example of a schematic view of the telescoping handler.



FIG. 9 shows the schematic view of an example of the embodiments of the toy tray



FIG. 11 shows the schematic view of an example of the embodiments of the case of the sweeping mechanism assembly



FIG. 12 is a schematic, left view of the case of the sweeping mechanism assembly.



FIG. 13 is a schematic, right view of the case of the sweeping mechanism assembly.



FIG. 14 is a schematic, front view of the case of the sweeping mechanism assembly.



FIG. 15 is a schematic, top view of the case of the sweeping mechanism assembly



FIG. 16 shows the schematic view of an example of the embodiments of the axle.



FIG. 17 shows the schematic view of an example of the embodiments of the drum.



FIG. 18 shows the schematic view of an example of the embodiments of the drum drive sprocket.



FIG. 19 shows the schematic view of an example of the embodiments of the friction drive engagement wheel



FIG. 20 shows the schematic view of an example of the embodiments of the friction drive wheel of the ratcheted system.



FIG. 21 shows the schematic view of an example of the embodiments of the ratcheted finger of the ratcheted system



FIG. 22 shows the schematic view of an example of the embodiments of the ratcheted finger spring of the ratcheted system.



FIG. 23 shows the schematic view of an example of the embodiments of the ratcheting wheel of the ratcheted system.



FIG. 24 shows the schematic view of an example of the embodiments of the non-ratchet wheel of the ratcheted system.



FIG. 25 snows the schematic view of an example of the embodiments of the rear wheel axle.



FIG. 26 shows the schematic view of an example of the embodiments of the rear wheel axle.



FIG. 27 is a schematic rear view of the sweeping mechanical assembly.



FIG. 28 shows the schematic view of an example of the embodiments of the telescoping handle grip of the multiple-position telescoping handler



FIG. 29 shows the schematic view of an example of the embodiments of the telescoping handle guard of the multiple-position telescoping handler.



FIG. 30 shows the schematic view of an example of the embodiments of the telescoping handle base of the multiple-position telescoping handler.



FIG. 31 shows the schematic view of an example of the embodiments of the telescoping handle guard rotation cover of the multiple-position telescoping handler.



FIG. 32 shows the schematic view of an example of the embodiments of the telescoping handle grip rotation cover of the multiple-position telescoping handler.



FIG. 33 shows the schematic view of an example of the embodiments of the wall inner telescope tube of the multiple-position telescoping handler.



FIG. 34 shows the schematic view of an example of the embodiments of the wall inner telescope tube of the multiple-positron telescoping handler.



FIG. 35 shows the schematic view of an example of the embodiments of the wall telescoping handle lock of the multiple-position telescoping handler



FIG. 36 shows the schematic view of an example of the embodiments of the telescoping handle lock release button or switch of the multiple-position telescoping handler.



FIG. 37 shows the schematic view of an example of the embodiments of the telescoping handle push rod block of the multiple-position telescoping handle



FIG. 38 shows the schematic view of an example of the embodiments of the telescoping handle lock push rod of the multiple-position telescoping handler



FIG. 39 shows the schematic view of an example of the embodiments of the telescoping handle lock of the multiple-position telescoping handler



FIG. 40 shows the schematic view of an example of the embodiments of the telescoping handle tube spacer of the multiple-position telescoping handler.



FIG. 41 shows the schematic view of an example of the embodiments of the friction drive lock plate base of the friction drive assembly.



FIG. 42 shows the schematic view of an example of the embodiments of the friction drive lock plate spacer of the friction drive assembly.



FIG. 43 shows the schematic view of an example of the embodiments of the friction drive lock plate back of the friction drive assembly.



FIG. 44 shows the schematic view of an example of the embodiments of the friction drive lock spring post of the friction drive assembly



FIG. 45 shows the schematic view of an example of the embodiments of the friction drive lock handle spacer of the friction drive assembly



FIG. 46 shows the schematic view of an example of the embodiments of the friction drive lock handle of the friction drive assembly.



FIG. 47 shows the schematic view of an example of the embodiments of the ride on toy bin back skin.



FIG. 48 shows the schematic view of an example of the embodiments of the ride on toy tray assembly.



FIG. 49 shows the schematic view of an example of the embodiments of the friction drive idler wheel.



FIG. 50 shows the schematic view of an example of the embodiments of the friction drive idler wheel assembly.



FIG. 51 shows the schematic view of an example of the embodiments of the ride on toy seat



FIG. 52 snows the schematic view of an example of the embodiments of the ride on toy seat.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

The present subject matter being disclosed by the Inventors relates to a children's ride-on and push toy as an example shown in FIG. 1 It may also function as sweeping device such as a floor sweeper or manual vacuum to pick up small objects lying on a plane surface. In FIG. 1, the embodiment of the present subject matter being disclosed by the Inventors may include a ride-on body 10 with a seat 20 on which a child can ride, a multiple-position telescoping handle 30, which may be switched and/or extended for a person to push or pull the ride-on toy; footrests 60 for the rider's feet; a sweeping mechanical assembly 40 to pick up toys and small objects, and a toy tray 300 to store the picked up small objects 30. The mechanical structure of sweeping assembly 40 is located under the ride-on body 10. In FIG. 3, for example, the mechanical structure of sweeping assembly 40 may further include a friction drive wheel 80, a friction non-drive wheel 90, a plurality of pickup fins 100, a deactivation button or switch or switch 150, a case 70, and a front wheel 75.


The ride-on body 10 may be in an animated form, such as animal form, vehicular form, vessel form, aircraft form, cartoon figures, or other form that enhances the enjoyment of riding FIG. 2 shows one of the embodiments of the present subject matter being disclosed by the Inventors in an animated form. The ride-on body 10 has an opening 15 underneath the head portion 12 of the ride-on body (see the example in FIG. 2). In FIG. 3, for example, the opening 15 (not shown) of the ride-on body 10 (not shown) is aligned with the opening 72 for the pickup fins 100 of the sweeping mechanical assembly 40.


As seen in FIG. 4, the sweeping mechanical assembly 40 of the embodiment of the present subject matter being disclosed by the Inventors may include a belt 110, pickup fins 100 vertically attached or affixed on the outer surface of the belt 110 as the sweeping paddlers or impeller, a first sprocket gear 125, and a second sprocket gear 130. In one embodiment, the first sprocket gear 125 is connected to the toy's ratcheting wheel 80 and the non-ratchet wheel 90 (not shown). The second sprocket gear 130 may be separated in a distance from the first sprocket gear 125. The belt 110 is stretched between those two sprocket gears. One end of the belt contacts with first sprocket gear 125. The other end of the belt 110 contacts with the second sprocket gear 130.


When the toy moves forward as the head portion of the ride-on body 10 is in the front, its ratcheting wheel 80 and non-ratchet wheel 90 drive the first sprocket gear 125, and then the first sprocket gear further drives the belt 110 to move. By this way, the pickup fins 100 on the outer surface of the belt 110 will continuously and rapidly move forward to sweep small objects 30 on the plane surface into the toy tray 300. The pickup fins 100 may be made of plastic material that is resilient and flexible to bend but has sufficient strength to push or sweep small objects when the pickup pins 100 are in contact with small objects on the plane surface. One embodiment of the pickup fins is made of vinyl polymer. The number of pickup fins is at least two


In one of the embodiment, the sweeping mechanism is controlled by a ratchet system 140 (as the example seen in FIG. 5) that limits the movement direction of the belt in the forward direction when the embodiment of the present subject matter being disclosed by the Inventors works as a sweeper to pick up small objects from the plane surface, and a deactivation button or switch 150 (as the example seen in FIG. 6) to deactivate the ratchet system when the embodiment of the present subject matter being disclosed by the Inventors is used as a ride-on toy only In FIG. 4, for example, the ratchet system 140 may include a ratcheted finger 160, ratcheted finger spring 170, and a ratcheting wheel 80 as seen in FIG. 5 The deactivation button or switch 150 is connected to a friction drive mechanical assembly 160 and the friction drive mechanical assembly 140 is further connected to the belt 110 (as the example shown in FIG. 4).


The friction drive mechanical assembly further comprises a friction drive lock plate base 180, friction drive lock plate spacer 190, friction drive lock plate back 200, friction drive lock spring post 210, friction drive lock handle 220, friction drive lock handle space 230, and shoulder 240 (as the example seen in FIG. 7).


In FIG. 8, for example, the ride-on toy body 10 may include a multiple-position telescoping handle 30, which can be switched and/or extended for a person to push or pull the ride-on toy. In one of the embodiment, the multiple-position telescoping handle 30 may further include telescoping handle grip 310, telescoping handle guard 320, telescoping handle guard rotation cover 330, telescoping handle grip rotation cover 340, telescoping handle base 350, wall inner telescope tube 360, wall inner telescope tribe 370, telescoping handle tube spacer 380, telescoping handle lock spring plate 390, telescoping handle lock 400, telescoping handle push rod block 410, telescoping handle lock release button or switch 420, telescoping handle lock push rod 430, bearing ball 440, and compression spring 450.


The multiple-position telescoping handle 30 may be connected to the ride-on body 10 by the telescoping handle base 350 (as the example seen in FIG. 1). The telescoping handle 30 may be pivoted around the telescoping handle base 350. The telescoping handle 30 can also move down and up along the wall inner telescope tube 360 and the wall inner telescope tube 407 The telescoping handle grip 401 can also pivot up and down around the telescoping handle guard 320 (as the example seen in FIG. 8).


It is to be understood that the present subject matter being disclosed by the Inventors is not limited to the embodiment above but encompasses any and all embodiments within the scope of the claims in the provisional application to be filed later. The dimensions, if any, shown in the figures are to give an example of the embodiment, but not to limit the disclosed subject matter to be claimed.

Claims
  • 1. A ride-on toy that can pick up small objects comprising: a mechanical gear system to faster deliver objects into the container,an adjustable handle with 3 positions allowing for, riding alone, riding while being pushed, a child pushing without a rider, and an adult pushing without a rider,a switch to enable or disable the collection mechanism,a ratchet system to keep the belt from moving in the opposite direction which could deliver collected objects out of the device,flexible vinyl fins which allow for better grip of small objects,a clear seat which allows one to see the deliverance of the objects into the container,a seat which opens to allow retrieval of objects collected by device into container,and a removable drawer to allow alternate retrieval of objects collected by device into container.