1. Field of the Invention
The present invention relates to amusement rides and more particularly to an amusement ride vehicle operable by a driver or a controller to provide increased freedom of movement.
2. Description of the Background Art
A range of games has become popular in which a player is equipped with a gun/handset that contains a laser light source. Each player wears a target mounted on the chest and/or back, which contains an apparatus to detect the light source emitted from the gun/handset of another player. A game is played in which a player scores points by shooting another player's target.
Additionally, user operated amusement vehicles have been developed in which a similar laser is mounted on a vehicle. The vehicle is operable to move so that the user may shoot targets with the vehicle mounted laser gun.
In the conventional vehicles, the control of movement of the vehicle is limited or controlled by a computer and not driver controlled. Furthermore, the position of the vehicle mounted laser gun is static or hand held. There is currently a need for a vehicle and system that provides an enhanced experience for the user by providing increased freedom of movement of operation. Furthermore, there is a need for a more dynamic way to mount and control the laser shooting device so that the game can be three dimensional.
In view of the foregoing and other exemplary problems, drawbacks, and disadvantages of the conventional methods and structures, an exemplary feature of the present invention is to provide a vehicle and system that provides an enhanced experience for the user by providing increased freedom of movement of operation.
According to a first non-limiting, exemplary aspect of the invention a vehicle includes a platform, a passenger seat supported above the platform, a pair of drive tires positioned on the platform and a pair of independent drive motors respectively connected to the pair of drive tires.
The independent drive motors and drive tires provide increased freedom of movement for the vehicle. That is, the independent drive motors allow the vehicle to drive forward and backward and to turn and/or rotate. Specifically, the vehicle is able to be rotated 360° in any direction.
According to another aspect of the present invention, the vehicle may include a transponder configured to receive operational control commands. Accordingly, the vehicle may be controlled by a passenger/driver or may be operated without passenger/driver control.
According to another exemplary aspect of the invention, the passenger seat is rotatably supported above the platform. Accordingly, additional freedom of movement is provided by configuring the passenger seat to be rotatable. That is, the passenger seat may rotate (i.e., flip) 360° such that the passenger seat may face forward, backward, upward and/or downward.
According to a second non-limiting, exemplary aspect of the invention a vehicle includes a passenger seat supported above the platform, a pair of drive tires positioned on the platform, a pair of independent drive motors respectively connected to the pair of drive tires, and a ride controller for controlling the pair of independent drive motors and the pair of drive tires.
According to a third non-limiting, exemplary aspect of the invention a system includes a vehicle and a target. The vehicle includes a platform, a passenger seat supported above the platform, a pair of drive tires positioned on the platform, a pair of independent drive motors respectively connected to the pair of drive tires, and a laser gun mounted on the passenger seat. The target is targetable by the laser gun.
The vehicle and system according to the above exemplary aspects of the invention provide increased user amusement and flexibility in use of the vehicle. That is, the vehicle and system may be used in several different modes. Specifically, the vehicle may be used in a ride mode, in which the vehicle is operated by a controller to maneuver the vehicle and passenger through a variety of maneuvers. Alternatively, the vehicle may be used in a driving mode in which the passenger/driver operates the vehicle through a variety of vehicle maneuvers. Additionally, the vehicle may be used within the system described above as part of a laser gun game.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus, do not limit the present invention, and wherein:
Referring now to the drawings, and more particularly to
A passenger seat 122 is disposed above the platform 110. The passenger seat 122 is suspended above the top surface 112 of the platform 114. The passenger seat 122 is supported by a frame 120. In the exemplary embodiment illustrated in
The passenger seat 122 has a passenger harness 124 configured to secure a passenger in the passenger seat 122. A foot support 126 is mounted to the bottom of the passenger seat 122. A pair of arm rests 129 is disposed on each side of the passenger seat 122. Furthermore, as is illustrated in
A vehicle controller 140 is mounted on the passenger seat. The vehicle controller 140 is configured to allow a user/passenger to operate the vehicle 100. In the exemplary embodiment illustrated in
The vehicle 100 comprises a vertical drive system including a vertical drive motor 132 including a drive belt 134 configured to rotate the support frame 120. The vertical drive motor 132 is mounted to one of the vertical supports 130. The vertical drive motor 132 is configured to rotate the frame 120 and passenger seat 122 up to 360°. Accordingly, the passenger in the seat 122 is able to face forward, upward, backward, downward, etc. For example, as is illustrated in
Referring to
The vehicle 100 also includes one or more speakers. In the exemplary embodiment illustrated in
A plurality of lights (e.g., LED lights) is positioned on the seat frame 120 and the platform 110. The lights perform a variety of functions including designating teams (e.g., by color), indicating vehicle state (e.g., on/off), indicating when actions or functions have happened or been performed, and indicating active targets.
Additionally, in accordance with certain exemplary aspects of the invention, a laser gun 190 may be mounted on the frame 120 of the vehicle allowing the driver to tilt the seat to aim the laser gun in any direction. The laser gun 190, for example, includes an infrared light gun. Thus, the laser light emitted from the gun functions as a visual aiming tool.
Furthermore, the vehicle 100 includes one or more targets configured to interact with the laser gun 190 from another vehicle. Preferably, the vehicle 100 includes a plurality of targets as illustrated in
The controller 902 is configured to operate the vehicle without passenger control. Specifically, the controller is configured to start the vehicle, time the ride, and turn off the vehicle automatically when a ride attendant starts the ride. The controller 902 communicates wirelessly with each of the vehicles. During the ride, the controller 902 is able to take temporary control of any or all of the vehicles 100 and control the movement and operation of the vehicle(s). Specifically, the controller 902 can send one or all of the vehicles 100 through wireless drive commands sending the car in any direction or at any angle. Alternatively, the controller 902 may have complete control over one or more of the vehicles 100 such that the entire ride of the vehicle(s) 100 is out of the user/passenger's control. The controller 902 may use a program to run the vehicle(s) in a series of ride motions using wireless drive controls.
Furthermore, during the ride, the ride controller 902 can play music or provide voice commands through the speakers 180. Specifically, the ride controller 902 can provide a current status, scoring opportunities, scores, and a variety of ride information to the passenger during a ride or game.
The system 900 may be incorporated into an arena or designated area. Using, for example, radio-frequency identification (RFID), the controller 902 can turn on/off specific areas of the arena allowing certain things to happen when one of the vehicles reaches the specific area. For example, RFID tags can be placed in the floor for a variety of uses. For example, a tag can be placed in several areas of the floor so that when a light shines on it (blue light for example) the first vehicle to get to that spot will get shields for 30 seconds where no one can hit the vehicle sensors.
Each vehicle 100 includes a ride transponder 170 positioned within the base 114 beneath the top surface 112 of the drive platform 110. The wireless transponder 170 receives operational information from the ride controller and broadcasts the operational information back to the ride controller.
The systems and vehicles described above may be used in several different modes. In a first exemplary mode, the vehicle(s) 100 may be used as a user operated drive platform. As a ride (e.g., amusement ride), the vehicle 100 allows the passenger to drive the vehicle to any area on a relatively flat surface. In addition, the passenger/driver can also perform tricks with the combination of the drive and flip mechanisms. That is, the passenger/driver may control the independent two wheel drive system and the vertical drive system using the vehicle controller 140. The independent two wheel drive system and the vertical drive system provide an enhanced user control system and freedom of movement allowing the user to drive the vehicle 100 while facing forward, backward, downward, upward, or while flipping. Additionally, the driver may spin the vehicle 100 with the passenger seat 122 in any position, including simultaneously flipping the passenger seat 122 and spinning the vehicle platform 110.
In a variation of the drive platform, the user operated vehicle 100 may be incorporated into a game in which points are accumulated for performing a specific trick during a specific time frame. The user may gain points by performing any of a variety of user selected tricks or a required trick communicated to the user through the ride controller 1002/1002. As detailed above, the ride controller 1002/1002 may temporarily take control of the vehicle 100 to perform a specific trick.
In another mode, the vehicle 100 may be used as a ride platform. In this mode, the operation of the vehicle 100 is completely at the control of the ride controller 1002/1002. That is, the vehicle 100 is operated entirely by the ride controller without user intervention. The controller 1002/1002 uses pre-programmed routines to make the vehicle(s) perform a variety of movements while the rider has no control of the vehicle.
In a third mode, the vehicle 100 is used in a laser gun game, incorporated in the system 1000 illustrated in
The targets 1008 may be turned on constantly throughout a game sequence or may be turned on/off during the game by the ride controller 1002. The targets 1008 include lights 1010 indicating when the targets 1008 are active. This allows the attraction to have a scoring component where the drivers/passengers can score points for shooting the targets 1006/1008. The game can also allow for bonus points added by scoring when the passenger seat 122 is in unique positions (e.g., upside down, etc.) for increased difficulty. Additionally, the RFID system, described above, can allow for increased points or bonus points for being in certain locations in the arena.
Moreover, in addition to scoring points, vehicle target hits can also effect an opponents vehicle. That is, when a vehicle is hit in, for example, the passenger seat targets 192/196, the frame cannot be spun/rotated for some specified period of time (e.g., 10 seconds). This is in addition to scoring points for the hit. Similarly, if either of the front targets 194 is hit, the vehicle cannot be moved for a period of time. When the platform targets 193 are hit, not only are points scored, the vehicle will perform motions not controlled by the driver. In another example, when a single rider hits all three front (or back) targets, the vehicle they hit will flip and spin at the same time. If a rear target is hit, the hit vehicle stands the driver upside down and slowly spin him.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.