The present invention relates to waveguide antenna, and particularly to ridged waveguide slot array antennae.
Waveguide slot array antennae are well known in the art, and are typically employed for providing high power capability in applications, such as base station transmitting antenna arrays.
As can be observed, the azimuth radiation patterns for each of the conventional vertically and horizontally-polarized waveguide slot arrays vary significantly over the coverage area, meaning that signal levels over these coverage areas vary greatly as a function of the user's position. As a result, a high power transmitter or a high gain antenna is needed to ensure that the minimum signal level is provided to all users, independent of their location. Accordingly, although slot arrays are suitable for high power transmission and reception applications, they cannot be fully deployed in applications where uniform coverage is needed.
U.S. Pat. No. 8,604,990 described a Ridged Waveguide Slot Array operable to provide more uniform coverage. However, a slot array operable with such characteristics over a broader operating frequency would be even more advantageous.
In accordance with one embodiment of the present invention, a ridged waveguide slot array which operates to provide a broader band radiation pattern compared to conventional waveguide slot arrays is now presented. An exemplary embodiment of the ridged waveguide slot array includes a waveguide slot body having one or more walls that define a longitudinal axis of the waveguide slot body. The waveguide slot body includes a narrowed waveguide section having a plurality of slots disposed thereon which extend along the longitudinal axis, the waveguide slot body further characterized by a longitudinal center line. The waveguide slot body defines a waveguide aperture having a major dimension and a minor dimension, wherein the major dimension of the waveguide aperture is less than one-half wavelength of a signal intended for propagation therein. Each slot of the plurality of slots is characterized by a slot area, a slot offset distance that extends from the center of the slot to the longitudinal center line, and a slot-to-slot separation distance extending from the center of the slot to the center of an adjacent slot. Each of the slot area, the slot offset and the slot-to-slot separation distance is decreased successively for a succession of the plurality of slots.
In one embodiment, the slot area includes a slot width and a slot length. Further with respect to this embodiment, each of the slot length, the slot width, the slot offset distance and the slot-to-slot separation distance is decreased successively for a succession of the plurality of slots.
In another embodiment, adjacent slots are offset in opposing directions from the longitudinal center line.
In a further embodiment, the ridged waveguide slot array includes a first end of the ridged waveguide slot array, and a second end coupled to receive a transmission signal. In this embodiment, a slot having each of the smallest slot area, the slot offset and the slot-to-slot separation distance is located proximate to the second end, and a slot having the largest slot area, the slot offset distance and the slot-to-slot separation distance is located proximate to the first end.
These and other features of the invention will be better understood in light of the following detailed description and drawings.
For clarity, previously identified features retain their reference indicia in subsequent drawings.
In accordance with the present invention, a ridged waveguide slot array is presented which provides improved performance. The new slot array includes a waveguide slot body having one or more walls which define a longitudinal axis of the waveguide slot body, and a plurality of waveguide slots disposed on the one or more walls of the waveguide slot body. The new slot array further includes a ridged waveguide section which is attached (directly or indirectly via an intervening structure) to the waveguide slot body, the ridged waveguide section including two spaced-apart opposing ridges that attach (directly or indirectly) to the one or more walls of the waveguide slot body, and that extend along the longitudinal axis of the waveguide slot body. The attaching of a ridged waveguide section to the waveguide slot body allows for advantages, such as a more uniform radiation pattern and smaller cross-sectional dimensions of the structure compared to conventional waveguide slot arrays.
In a particular embodiment, the waveguide slot body implemented in the present invention defines a waveguide aperture having a major dimension and a minor dimension, whereby the major dimension of the waveguide aperture is smaller than 0.5λ (the minor dimension is smaller than the major dimension in order for the major dimension to define the lowest operating mode of the waveguide array). In one embodiment, the major dimension is less than 0.4λ, and in still another embodiment, the major dimension is less than 0.35λ. The reduction in size across the major axis of the waveguide slot body (i.e., the “A” dimension of the waveguide aperture) permits closer slot spacing, thus providing a more uniform azimuth antenna pattern.
In one embodiment, a vertically-polarized ridged waveguide slot array is disclosed in which the ridged waveguide section is disposed substantially along the longitudinal center of the waveguide slot body. In another embodiment, a horizontally-polarized ridged waveguide slot array is disclosed in which the ridged waveguide section is realized as two ridged waveguide sections which extend longitudinally along opposing lateral sides of the waveguide slot body.
The following embodiments illustrate dimensions of the ridged waveguide slot array for a desired frequency of operation of 542-580 MHz, although the invention may be employed at any frequency, for example, any RF or Microwave frequency, such as one or more frequencies over the range of 100 MHz to 40 GHz.
Transverse to the longitudinal axis 312, the waveguide slot body 310 defines a waveguide aperture (further detailed below) having a major dimension 313 (shown along the x-axis) and a minor dimension 314 (shown along the y-axis). The major dimension 313 defines the lowest frequency of operation for the array 300, and in one embodiment, is less than 0.5λ in its dimension. The waveguide slot body 310 further includes edge slots 322 and 324, each angled β in respective positive and negative angular orientations relative to the axis of the minor dimension 314. Further exemplary, each of the edge slots 322 and 324 extend around multiple sides of the waveguide body 310, and in a particular, extend around the entire periphery of the waveguide body 310. In the illustrated embodiment in which the waveguide body 310 is a rectangular waveguide, the edge slots 322 and 324 extend to all four walls of the waveguide body 310. Further particularly, the edge slots 322 and 324 are angled relative to the axis of the minor dimension 314 along two walls of the waveguide body 310, and are not angled (relative to the major dimension 313) along the two other walls of the waveguide body. An end cap 330 is located at the top of the array 300.
The exemplary waveguide slot body 310 includes two side walls 311a and 311c and two broadside walls 311b and 311d. Further particularly, the edge slots 322 and 324 are angled relative to the axis of the minor dimension 314 along the two side walls 311a and 311c of the waveguide slot body 310, and are not angled (relative to the major dimension 313) along the two broadside walls 311b and 311d of the waveguide slot body 310.
Further exemplary of the ridged waveguide slot array with vertical polarization, each edge slot extends to each of (i.e., at least reaches) the two side walls 311a, 311c and to each of the broadside walls 311b, 311d. That is, the edge slots 322 and 324 extend to all four sides of the body 310, as the length of each edge slot 322 and 324 approaches 0.5λ, and because the cross-section of the body 310 is reduced.
Transverse to the longitudinal axis 412, the waveguide slot body 410 defines a waveguide aperture (further detailed below) having a major dimension 413 (shown along the x-axis) and a minor dimension 414 (shown along the y-axis). The major dimension 413 defines the lowest frequency of operation for the array 400, and in one embodiment, is less than 0.5λ in its dimension. The waveguide slot body 410 includes longitudinal slots 422 and 424 disposed on respective opposing broadsides of the waveguide body 410. Each slot 422 is offset a predefined distance “d” from a center line “CL” of the waveguide slot body 410, whereby adjacent slots on this broadside wall are offset in opposing directions from the center line CL. Longitudinal slots 424 are disposed on the opposing broadside wall of the waveguide slot body 410 and represent a continuation of longitudinal slots 422 bored through the hollow waveguide slot body 410 into the second/opposing broadside wall. As such, opposing longitudinal slots 424 are disposed at substantially the same coordinates along the second/opposing broadside wall as slots 422 are disposed along the first broadside wall. An end cap 430 is located at the top of the array 400. The first longitudinal slots (top most, and starting most proximate to end cap 430) on each broadside of the waveguide slot body 410 are identified with reference indicia 422a and 424b.
As shown, longitudinal slots 422 and 424 (only slots 422a and 424a are depicted to avoid obscuring the drawing) are disposed (e.g., cut) in the narrowed waveguide section 416 on respective broadsides thereof. In the illustrated embodiment, a plurality of longitudinal slots 422 are provided such that each is offset a predefined distance d from a center line CL along the longitudinal axis 412 of the ridged waveguide body 410, adjacent longitudinal slots being offset in opposing directions from the center line. The offsetting distance can be selected based upon the desired operating frequency. Opposing longitudinal slots 424 are disposed on the opposing broadside wall within the narrowed waveguide section 416 of the waveguide body 410 at substantially the same coordinates opposite the longitudinal slots 422. In an exemplary embodiment, dimension “d” is 0.045λ, and the center to center slot spacing is 0.56λ, with each slot measuring 0.43λ in the longitudinal directional and 0.046λ in the direction normal thereto.
As known in the art, the radiation characteristics on the horizontal plane (azimuth pattern) of the ridged waveguide slot array 400 is determined largely by the relative distance between the opposing broadside slots 422 and 424 on the horizontal plane, and the shape of outer contour of the ridged waveguide slot array 400 separating these two sets of slots. Each slot (e.g., 422a) will typically have the same phase angle relative to its corresponding slot (e.g., 424a), (e.g., the phase angle being, e.g., 0 degrees relative to the longitudinal axis of the waveguide slot body), each slot operable as a resonator to excite a current on the waveguide outer wall to contribute to the total radiation pattern. In order to create a uniform signal distribution around the 360° area of the array, the distance between corresponding (opposing broadside) slots (e.g., 422a and 424a) should be relatively short (e.g., less than 0.01λ) as it would prove difficult to compensate for the phase differences between the two corresponding slots if the slots were separated by a significant distance.
The array 400 includes two laterally-opposed ridged waveguide sections 4181 and 4182. Each of the ridged waveguide sections 4181 and 4182 includes two spaced apart opposing ridges 418a and 418b which extend longitudinally along opposing lateral sides of the waveguide slot body 410. Further exemplary, the exterior surfaces of each ridged waved section 4181 and 4182 may be tapered to further provide a more uniform electrical path between the opposing broadside slots (e.g., 422a and 424a) on the waveguide slot body 410. The external surfaces of sections 4181 and 4182 may be formed in the shape other contours, e.g., elliptical, circular, or exponential tapers or any other shape. Exemplary, each ridged waveguide section 4181 and 4182 measures 0.13λ (w)×0.004λ (h), tapering down to a height of 0.0036λ (h), as shown. Gap 419 providing separation between the opposed ridges 418a1 and 418b1 and opposed ridges 418a2 and 418b2 measures 0.001λ (h). In another embodiment, the gap 419 is removed and the two opposing ridges 418a and 418b are brought into contact with each other, or alternatively form a single piece. In such an embodiment, the exterior surfaces of each waveguide section 4181 and 4182 are described as above, i.e., each may be tapered or otherwise shaped (elliptical, circular, exponential tapers) to provide a more uniform electrical path between opposing broadside slots (e.g., 422a and 424a) on the waveguide slot body 410.
Use of the ridged waveguide sections 4181 and 4182 provides more freedom to adjust the horizontal radiation pattern of the array 400, as the outer contour of the ridged waveguide sections 4181 and 4182 can be modified/shaped to adjust the electrical length between opposing broadside slots 422a and 424a, thus providing a means to optimize the horizontal radiation pattern. In the illustrated embodiment, the ridged waveguide sections provide capacitive coupling along lateral sides of the waveguide slot body 410 down the longitudinal axis 412. While each ridged waveguide section 418 is illustrated as two spaced-apart opposing ridges 418a and 418b, those skilled in the art will appreciate that the same electrical effect can be obtained using other means, for example a single ridge which extends from the upper or lower wall to close proximity to the opposing wall to provide the desired (e.g., capacitive) coupling effect therebetween. Further, the same electrical effect can be obtained using discrete components, such as capacitive elements disposed along the lateral sides of the waveguide slot body 410.
In a further embodiment of the ridged waveguide slot array 400 shown in
Further exemplary, the side proximate to the slots 422/424 having the smallest opening is the side into which a signal is injected for transmission. If the supplied signal is of a frequency lower than intended for transmission by the first occurring slots 422/424 (i.e., if the slot is too small to radiate the supplied signal), then the slots do not significantly radiate the signal, and the supplied signal passes onto the subsequent (larger) slot. This process repeats until the supplied signal encounters the slots 422/424 which are sized to transmit the supplied signal. If a remaining portion of the supplied signal leaks to a subsequent slot (which would be too large for signal transmission, i.e., >0.5λ), that slot operates to reflect the signal portion back towards the appropriately-sized slots for transmission. Accordingly, the array 400 of the present invention provides improved transmission and reception efficiency over a broadband, the bandwidth being limited only by the cutoff frequency of the array 400.
Transverse to the longitudinal axis 512, the waveguide slot body 510 defines a waveguide aperture (further detailed below) having a major dimension 513 (shown along the x-axis) and a minor dimension 514 (shown along the y-axis). The major dimension 513 defines the lowest frequency of operation for the array 500, and in one embodiment, is less than 0.5λ in its dimension. The waveguide slot body 510 includes longitudinal slots 522 and 524 disposed on respective opposing broadsides of the waveguide body 510. Each slot 522 is offset a predefined distance “d” from a center line “CL” or “C/L” of the waveguide slot body 510, whereby adjacent slots on this broadside wall are offset in opposing directions from the center line CL. Longitudinal slots 524 are disposed on the opposing broadside wall of the waveguide slot body 510 and represent a continuation of longitudinal slots 522 bored through the hollow waveguide slot body 510 into the second/opposing broadside wall. As such, opposing longitudinal slots 524 are disposed at substantially the same coordinates along the second/opposing broadside wall as slots 522 are disposed along the first broadside wall. An end cap 530 is located at the top of the array 500 (distal from the signal input of the array at the bottom end of the array). The first longitudinal slots (top most, and starting most proximate to end cap 530) on each broadside of the waveguide slot body 510 are identified with reference indicia 522a and 524b.
As shown in
In exemplary applications, the ridged waveguide slot array antennae 400 and 500 are used in television broadcasting stations or repeater stations. Further exemplary, the arrays are implemented to transmit signals within the UHF frequency band. In a specific embodiment, two array are used to cover the UHF band, a first array to cover the 470-620 MHz band, and a second array to cover the 620-870 MHz band. Those skilled in the art will appreciate that the invention can be implemented with other applications at the aforementioned or other operating frequencies as well.
In accordance with the exemplary embodiment of
Further exemplary of the
Further exemplary of the
Further exemplary of the
In accordance with the exemplary embodiment of
Further exemplary of the
Further exemplary of the
Further exemplary of the
The ridged waveguide slot array 300, 400 and 500 may be manufactured using a variety of materials and processes. Materials such Kovar, brass, aluminium, and other materials used for the construction of waveguides may be employed. Further, different manufacturing techniques can be used to produce the arrays 300, 400 and 500, for example numerically-controlled machining, casting or other waveguide construction techniques.
As readily appreciated by those skilled in the art, the described processes and operations may be implemented in hardware, software, firmware or a combination of these implementations as appropriate. In addition, some or all of the described processes and operations may be implemented as computer readable instruction code resident on a non-transitory computer readable medium, the instruction code operable to control a computer of other such programmable device to carry out the intended functions. The computer readable medium on which the instruction code resides may take various forms, for example, a removable disk, volatile or non-volatile memory, etc.
The terms “a” or “an” are used to refer to one, or more than one feature described thereby. Furthermore, the term “coupled” or “connected” refers to features which are in communication with each other (electrically, mechanically, thermally, as the case may be), either directly, or via one or more intervening structures or substances. The sequence of operations and actions referred to in method flowcharts are exemplary, and the operations and actions may be conducted in a different sequence, as well as two or more of the operations and actions conducted concurrently. Reference indicia (if any) included in the claims serves to refer to one exemplary embodiment of a claimed feature, and the claimed feature is not limited to the particular embodiment referred to by the reference indicia. The scope of the claimed feature shall be that defined by the claim wording as if the reference indicia were absent therefrom. All publications, patents, and other documents referred to herein are incorporated by reference in their entirety. To the extent of any inconsistent usage between any such incorporated document and this document, usage in this document shall control.
The foregoing exemplary embodiments of the invention have been described in sufficient detail to enable one skilled in the art to practice the invention, and it is to be understood that the embodiments may be combined. The described embodiments were chosen in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined solely by the claims appended hereto.
The present application is a continuation-in-part of U.S. Ser. No. 14/072,573 filed Nov. 5, 2013, which is a continuation of U.S. Ser. No. 12/471,367 filed May 23, 2009, the contents of each of which are incorporated herein in its entirety for all purposes. The present application further claims the benefit of priority to U.S. 62/060,082 filed Oct. 6, 2014, entitled “Ridge Waveguide Slot Array for Broadband Application,” the contents of which are incorporated herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2772400 | Simmons | Nov 1956 | A |
3193830 | Provencher | Jul 1965 | A |
3949405 | Roquencourt | Apr 1976 | A |
4638323 | Shnitkin et al. | Jan 1987 | A |
5579015 | Collignon | Nov 1996 | A |
5638079 | Kastner et al. | Jun 1997 | A |
5914694 | Rabb | Jun 1999 | A |
5990844 | Dumont | Nov 1999 | A |
6115002 | Fischer | Sep 2000 | A |
6127985 | Guler | Oct 2000 | A |
6509881 | Falk | Jan 2003 | B2 |
7307596 | West | Dec 2007 | B1 |
7327325 | Schadler | Feb 2008 | B2 |
7554504 | Mohamadi | Jun 2009 | B2 |
8604990 | Chen et al. | Dec 2013 | B1 |
8610633 | Chen et al. | Dec 2013 | B2 |
20050219136 | Iskander et al. | Oct 2005 | A1 |
20060114165 | Honda et al. | Jun 2006 | A1 |
20060132374 | Wang | Jun 2006 | A1 |
20090022445 | Hochberg et al. | Jan 2009 | A1 |
20100187442 | Hochberg et al. | Jul 2010 | A1 |
20120033294 | Beausoleil et al. | Feb 2012 | A1 |
20140055311 | Chen et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
101562280 | Oct 2009 | CN |
Entry |
---|
English language abstract for CN 101562280. |
Number | Date | Country | |
---|---|---|---|
20160028165 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62060082 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12471367 | May 2009 | US |
Child | 14072573 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14072573 | Nov 2013 | US |
Child | 14842837 | US |