This disclosure relates to wellbore drilling and production.
Hydrocarbons trapped in subsurface reservoirs are retrieved by first forming wellbores from the surface of the Earth to the subsurface reservoirs and then producing (that is, raising) the trapped hydrocarbons through the wellbores to the surface. Equipment used to drill the wellbores can include a drill string that is disposed in the wellbore and which includes a drill bit that drills into the Earth, and a surface rig system which supports the drill string and provides other functions. The surface rig system can include multiple surface components such as equipment to hoist and rotate the drill string and to pump drilling fluid into the drill string.
This disclosure describes a system, tool, and method for monitoring the accuracy of the various rig sensors positioned on the various surface components of a well drilling system.
Certain aspects of the subject matter herein can be implemented as a method including attaching a sensor calibration tool to a drill string. The sensor calibration tool includes a first tool sensor configured to measure a first operational parameter. A first tool sensor measurement of the first operational parameter is received from the first tool sensor, where the drill string is disposed at least partially within a wellbore and supported by a surface rig system and the sensor calibration tool is positioned on the drill string at a surface location proximate to the surface rig system. A first rig sensor measurement of the first operational parameter is received from a first rig sensor positioned on a first surface component of the surface rig system. The first rig sensor is calibrated based on a comparison of the first tool sensor measurement with the first rig sensor measurement.
An aspect combinable with any of the other aspects can include the following features. The first tool sensor measurement and the first rig sensor measurement each include a respective plurality of measurements of the first operational parameter over a period of time.
An aspect combinable with any of the other aspects can include the following features. The sensor calibration tool includes a memory module. The first rig sensor measurement is stored in the memory module.
An aspect combinable with any of the other aspects can include the following features. The receiving of the first tool sensor measurement and the receiving of the first rig sensor measurement are by a data gathering and analysis module comprising a computer system comprising one or more processors and a non-transitory computer readable medium storing instructions executable by the one or more processors to perform operations.
An aspect combinable with any of the other aspects can include the following features. The sensor calibration tool includes a wireless transmitter. The first tool sensor measurement is transmitted from the sensor calibration tool via wireless telemetry to the data gathering and analysis module.
An aspect combinable with any of the other aspects can include the following features. A difference between the first tool sensor measurement and the first rig sensor measurement is calculated by the data gathering and analysis module. The difference is compared to a stored difference threshold by the data gathering and analysis module. An alert is transmitted by the data gathering and analysis module in response to the difference exceeding the stored difference threshold.
An aspect combinable with any of the other aspects can include the following features. Historical measurements from the first rig sensor of the first operational parameter are stored by the data gathering and analysis module. The historical measurements are adjusted by the data gathering and analysis module based in part on the comparison of the first tool sensor measurement with the first rig sensor measurement.
An aspect combinable with any of the other aspects can include the following features. The first operational parameter can include a frequency of rotation of the drill string, a pressure of fluid pumped through a stand pipe line and down the drill string, a flow rate of fluid pumped through the stand pipe line and down the drill string, a temperature of fluid pumped through the stand pipe line and down the drill string, a torque load of the drill string, a frequency of mud pump strokes, a weight of the drill string, vibrations in the drill string, or acoustic signals in proximity of the drill string.
An aspect combinable with any of the other aspects can include the following features. The first surface component of the surface rig system includes a stand pipe line, a top drive, a mud pump, a mud pit, a rotary table, or a draw works for a drill line.
An aspect combinable with any of the other aspects can include the following features. The first rig sensor is included in a plurality of rig sensors, each rig sensor positioned on a respective one of a plurality of surface components of the surface rig system, each rig sensor configured to measure a respective one of a plurality of operational parameters. The first tool sensor is included in a tool sensor bank disposed on the sensor calibration tool, the tool sensor bank comprising a plurality of tool sensors, each tool sensor of the tool sensor bank configured to measure a respective one of the plurality of operational parameters. A respective tool sensor measurement of the respective operational parameter for which the tool sensor is configured to measure receiving is received from each tool sensor in the tool sensor bank. A respective rig sensor measurement of the respective operational parameter for which the surface rig sensor is configured to measure is received from each of a plurality of rig sensors. Each of the plurality of rig sensors is calibrated based on a comparison of the respective tool sensor measurement with the respective tool sensor measurement of the respective operational parameter for which the rig sensor is configured to measure.
Certain aspects of the subject matter herein can be implemented as a drilling sensor calibration system. The drilling sensor calibration system includes a surface rig system configured to support a drill string, a first rig sensor positioned on a first surface component of the surface rig system, the first rig sensor configured to measure a first operational parameter, and a sensor calibration tool configured to be attached to the drill string at a surface location proximate to the surface rig system, the sensor calibration tool comprising a first tool sensor configured to measure the first operational parameter. The drilling sensor calibration system also includes a data gathering and analysis module includes a computer system comprising one or more processors and a non-transitory computer readable medium storing instructions executable by the one or more processors to perform operations. The operations include receiving, from the first tool sensor, the first tool sensor measurement of the first operational parameter, receiving, from the first rig sensor, the first rig sensor measurement of the first operational parameter, and displaying a comparison of the first tool sensor measurement with the first rig sensor measurement.
An aspect combinable with any of the other aspects can include the following features. The operations include calibrating the first rig sensor based on a comparison of the first tool sensor measurement with the first rig sensor measurement
An aspect combinable with any of the other aspects can include the following features. The first tool sensor measurement includes a plurality of measurements over a period of time.
An aspect combinable with any of the other aspects can include the following features. The sensor calibration tool includes a memory module. The first rig sensor measurement is stored in the memory module.
An aspect combinable with any of the other aspects can include the following features. The sensor calibration tool includes a wireless transmitter. The first tool sensor measurement is transmitted via wireless telemetry from the sensor calibration tool to the data gathering and analysis module.
An aspect combinable with any of the other aspects can include the following features. The operations include calculating, by the data gathering and analysis module, a difference between the first tool sensor measurement and the first rig sensor measurement, comparing, by the data gathering and analysis module, the difference to a stored difference threshold, and transmitting, by the data gathering and analysis module, an alert in response to the difference exceeding the stored difference threshold.
An aspect combinable with any of the other aspects can include the following features. The operations include storing, by the data gathering and analysis module, historical measurements from the first rig sensor of the first operational parameter, and adjusting, by the data gathering and analysis module, the historical measurements based in part on the comparison of the first tool sensor measurement with the first rig sensor measurement.
An aspect combinable with any of the other aspects can include the following features. The first operational parameter includes a frequency of rotation of the drill string, a pressure of fluid pumped through a stand pipe line and down the drill string, a flow rate of fluid pumped through the stand pipe line and down the drill string, a temperature of fluid pumped through the stand pipe line and down the drill string, a torque load of the drill string, a frequency of mud pump strokes, a weight of the drill string, vibrations in the drill string, or acoustic signals in proximity of the drill string.
An aspect combinable with any of the other aspects can include the following features. The first surface component of the surface rig system includes a stand pipe line, a top drive, a mud pump, a mud pit, a rotary table, or a draw works for a drill line.
An aspect combinable with any of the other aspects can include the following features. The first rig sensor is included in a plurality of rig sensors, each rig sensor positioned on a respective one of a plurality of surface components of the surface rig system. Each rig sensor is configured to measure a respective one of a plurality of operational parameters, and wherein the first tool sensor is included in a tool sensor bank disposed on the sensor calibration tool, the tool sensor bank comprising a plurality of tool sensors, each tool sensor of the tool sensor bank configured to measure a respective one of the plurality of operational parameters. The operations include receiving, from each tool sensor in the tool sensor bank, a respective sensor measurement of the respective operational parameter for which the tool sensor is configured to measure, receiving, from each of a plurality of rig sensors, a respective sensor measurement of the respective operational parameter for which the rig sensor is configured to measure, and displaying a comparison of the respective tool sensor measurement with the respective tool sensor measurement of the respective operational parameter for which the rig sensor is configured to measure.
The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
During drilling operations, it can be useful for an operator to have information regarding various operational parameters of the well drilling system such as drill string weight, revolutions-per-minute (RPM) of the drill string, drilling fluid pressure, drilling fluid flow, drilling fluid temperature, drill string vibrations, noise, and/or tension, compression, drag, and/or strain of the drill string. Such information can be used by the operator to monitor drilling operations so as to optimize rate of penetration and otherwise maximize the safe, efficient, and cost-effective operation of the well system.
Sensors that measure such operational parameters are typically positioned on various surface components of the rig system. The kind, location, and accuracy of rig sensors can vary greatly with different well systems in different locations and different kinds and types of equipment and sensors. In addition, it is common for rig sensors to go out of calibration or otherwise develop inaccuracies that are reflected in the operational parameter information received by the operator. Different skill levels of crew members can also contribute to differences in operational parameter information received by the operator from the rig sensors.
This disclosure describes a system, tool, and method for monitoring the accuracy of the various rig sensors positioned on the various surface components of a well drilling system. In accordance with an embodiment of the disclosure, an instrumented sub comprising a sensor calibration tool housing one or multiple tool sensors can be attached to the drill string. Each of the tool sensors on the sensor calibration tool can measure an operational parameter that is also measured by a corresponding rig sensor that is positioned on a surface component. Sensor data from the rig sensors and the tool sensors can be captured by a data gathering and analysis module and displayed for the operator on a display screen. The system can be configured to alert the operator if differences between the rig sensor measurement and the tool sensor measurement exceed a threshold value. Based on the sensor data and comparison information provided by the system, rig sensors can be calibrated and/or otherwise adjusted and managed to enhance sensor data accuracy.
Properly calibrated and accurate rig sensors can contribute to a higher rate-of-penetration and avoid drill string failure and/or other conditions or events that can result in lost time and increased costs. The sensor calibration tool can be easily attached or detached from the drill string and carried to a different wellsite, such that the system with the same tool sensor suite can be utilized at multiple drilling locations, thus minimizing time and costs and allowing for consistent sensor calibration procedures and results.
In accordance with an embodiment of the present disclosure, the sensor calibration tool and system can be brought to a wellsite in response to an incident such as stuck pipe or twist off and installed on the well system to determine whether and the extent to which any rig sensors are out-of-calibration or otherwise inaccurate. Historical data related to the incident can be analyzed and corrected if necessary utilizing data from the sensor calibration tool. Data from the sensor calibration tool can be utilized in preventative tools such as machine learning algorithms for automated operations or rig crew training.
Well system 100 includes a surface rig system 102 and a drill string 150. Surface rig system 102 includes several surface components at or near the surface, including a derrick 104 that is supported above a rig floor 106. In other embodiments, a mast may be used in lieu of a derrick 104. Surface rig system 102 further includes a lifting gear that includes a crown block 108 mounted to the derrick 104, a travelling block 110, a hook 116, and a swivel 118. The crown block 108 and the travelling block 110 are interconnected by a cable 112 that is driven by draw works 114 to control the upward and downward movement of the travelling block 110. Travelling block 110 carries hook 116 from which is suspended swivel 118. The swivel 118 supports a top drive 138, which is also a surface component of surface rig system 102. Other surface components of surface rig system 102 include slips 122, mud pumps 124, stand pipe line 132, and mud tanks 128, described in more detail below. In other embodiments, surface rig system 102 can include other, more, and/or fewer surface components.
Drill string 150 includes drill pipe 154 (which comprises a plurality of interconnected drill pipe sections), and further includes a saver sub 152 at the top (uphole) end of drill string 150 and a bottom-hole assembly (BHA) 156 at the downhole end of drill string 150. BHA 156 includes a drill bit 158 and a mud motor 160, and may also include stabilizers, drill collars, measurement well drilling (MWD) instruments, and the like.
Drill string 150 is positioned at least partially in well bore 101. The top of drill string 150, specifically, saver sub 152, is attached to top drive 138. In this way, surface rig system 102 supports drill string 150. The weight of drill string 150 may be further supported by slips 122.
Surface rig system 102 also pumps drilling fluid, or mud, 126, down drill string 150. More specifically, mud pumps 124 draw drilling fluid 126 from mud tanks 128 through stand pipe line 132. The drilling fluid 126 is delivered to the drill string 150 through stand pipe line 132 which connects to swivel 118. From the swivel 118, the drilling fluid 126 travels through the drill string 150 to the BHA 156, where it turns the mud motor 160 and exits the bit 158 to scour the formation and lift the resultant cuttings through the annulus to the surface. At the surface, mud tanks 128 receive the drilling fluid 126 from the well bore 101 through a flow line 134. The mud tanks 128 and/or flow line 134 can include a shaker or other device to remove the cuttings.
Drilling is accomplished by rotating the drill string 150, which in turn rotates the bit 158, and applying weight on bit 158. Surface rig system 102, and specifically, top drive 138, provides the rotation to drill string 150 within bore hole 101. Alternatively or in addition, a down hole motor may rotate the bit 158 independently of the drill string 150 and the top drive 138. As previously described, the cuttings produced as bit 158 drills into the earth are carried out of bore hole 101 by the drilling fluid 126 supplied by pumps 124.
In some embodiments, a drilling rig may include a rotary table at the rig floor instead of a top drive. In such embodiments, the rotary table is part of the surface rig system and provides the rotation to drill string 150 during drilling operations.
Information regarding operational parameters of well system 100 such as drill string weight, revolutions-per-minute (RPM) of the drill string, drilling fluid pressure, drilling fluid flow, drilling fluid temperature, drill string vibrations, noise, and/or tension, compression, drag, and/or strain of the drill string can come from rig sensors positioned on (that is, attached to or positioned on the surface of or within) some of the surface components of surface rig system 102, such as draw works 114, stand pipe line 132, mud pumps 124, and/or top drive 138.
For example, in some embodiments, a hook load rig sensor 170 can attached to draw works 114 to measure the weight supported by draw works 114. Hook load rig sensor 170 can be attached at or near the “dead end” of cable 112 or another suitable location.
In some embodiments, additional rig sensors that measure other operational parameters are positioned on other surface components of surface rig system 102. For example, fluid pressure rig sensor 172 can be disposed on or within stand pipe line 132 to measure a pressure of drilling fluid 126 fluid pumped through a stand pipe line 132 and down drill string 150. A flow rig sensor 174 can be disposed one or within mud pumps 124 to measure the rate of flow of drilling fluid 126 pumped by mud pumps 124 through stand pipe line 132 and down drill string 150. In some embodiments, flow rig sensor 174 can detect the number of strokes per minute of mud pumps 124 instead of or in addition to the flow rate. A temperature rig sensor 176 can be disposed on or within mud pumps 124 to measure a temperature of drilling fluid 126.
In some embodiments, one or more sensors can be attached to top drive 138. For example, a torque rig sensor 178 can be attached to top drive 138 to measure a torque load of the drill string. A revolutions-per-minute (RPM) rig sensor 180 can be attached to top drive 138 to measure a frequency of rotation of the drill string. A vibration rig sensor 182 can be attached to top drive 138 to measure vibration at or near the top of drill string 150. An acoustic rig sensor 184 can be attached to top drive 138 to measure noise or other acoustic signals at or near the top of drill string 150.
In drilling systems where a rotary table is used instead of a top drive, the torque, RPM, vibration, and acoustic rig sensors can be attached to or near the rotary table instead of top drive 138. Vibration and/or acoustic rig sensors can also be attached to other surface components of surface rig system 102.
In some embodiments, all of the above-described rig sensors are attached to the surface components of surface rig system 102 as described above. In other embodiments, only one or some of the above-described rig sensors are attached to the surface rig system 102 components. In some embodiments, additional or other rig sensors can be included to measure the above-described or other operational parameters, and/or rig sensors can be placed within, on, or near different or additional surface components of surface rig system 102 than the ones described above.
In an embodiment of the present disclosure, a sensor calibration tool 162 can be attached to drill string 150. As described in more detail in reference to
As described in more detail in
Well system 100 also includes a data gathering and analysis module 190 to receive and/or analyze sensor data from the rig sensor or sensors and the tool sensor or sensors, as described in further detail below. Data gathering and analysis module 190 can include a wireless reader or other receiver to download information from sensor calibration tool 162 such as sensor data from tool sensors of sensor calibration tool 162. Data gathering and analysis module 190 can also be configured to receive data from one, some, or all of the rig sensors of surface rig system 102, via wired or wireless connection.
In some embodiments, data gathering and analysis module 190 includes a computer system that comprises one or more processors, and a computer-readable medium (for example, a non-transitory computer-readable medium) storing computer instructions executable by the one or more processors to perform operations. In some embodiments, data gathering and analysis module 190 is configured to receive display sensor data received from the rig sensors and/or the tool sensors and transmit the information to data display screen 192, which can provide the information to an operation using a graphical user interface (GUI) or other suitable user interface. Sensor data from a rig sensor of a surface component of surface rig system 102 can be displayed next to sensor data from a tool sensor on sensor calibration tool 162 for the same operational parameter. An operator observing a difference in the sensor data between the rig sensor and the corresponding tool sensor can take a suitable action such as calibrating or otherwise adjusting the rig sensor and/or replacing a failed rig sensor.
For example, sensor calibration tool 162 can include a weight sensor which provides information regarding the weight of drill string 150. Measurements from the weight tool sensor can be displayed next to data from hook load rig sensor 170 on draw works 114. Sensor calibration tool 162 can also include a tool sensor that is an RPM sensor to measure the RPM of drill string 150, and measurements from this RPM tool sensor can be displayed next to data from RPM rig sensor 180 on top drive 138. Values from other tool sensors on sensor calibration tool 162 can likewise be displayed next to corresponding values for the same operational parameter from rig sensors on surface rig system 102.
In some embodiments, while attached to drill string 150, sensor calibration tool 162 is positioned at a surface location proximate to surface rig system 102 and the tool sensor measurements and rig sensor measurements can be transmitted and received while the tool is positioned at this surface location. In some embodiments, sensor calibration tool 162 is positioned above rig floor 106. In some embodiments, sensor calibration tool 162 can be positioned at a near-surface location some distance downhole, for example, within about 300 feet of the surface. For example, in the embodiment illustrated in
As drilling continues and drill string 150 travels further downhole, sensor calibration tool 162 can be removed from drill string 150 before sensor calibration tool 162 descends into (or further into) wellbore 101. In some embodiments, sensor calibration tool 162 can then be reattached at a higher point on drill string 150 to maintain the position of sensor calibration tool 162 at a surface location as drilling operations continue. In some embodiments, sensor calibration tool 162 is attached to saver sub 152 and drill pipes 154 added beneath sensor calibration tool 162, such that sensor calibration tool 162 remains at a surface location as drill pipes 154 and other portions of drill string 150 are lowered into wellbore 101. In some embodiments, sensor calibration tool 162 is lowered into wellbore 101 along with other components of drill string 150 as drill string 150 travels further downhole.
As described in further detail with regards to
In some embodiments, data gathering and analysis module 190 can adjust the measurements from the rig sensors and/or the tool sensors so as to make the measurements more directly comparable. For example, in some embodiments, a measurement from hook load rig sensor 170 on draw works 114 can be adjusted by removing (manually or automatically) the known weight of travelling block 110, hook 116, swivel 118, and top drive 138 such that what is left represents the weight of drill string 150 and can be more directly compared to the measurement of the weight of drill string 150 from the weight sensor on sensor calibration tool 162. In some embodiments, no adjustment is necessary because any adjustment would be within the margin of error of the sensor.
In some embodiments, sensor data can be streamed and displayed in real time, and can include single measurements and/or multiple measurements over time. In some embodiments, historical sensor data can be downloaded from sensor calibration tool 162 to data gathering and analysis module 190 and retrieved by the operator from data gathering and analysis module 190 as needed by inputting retrieval commands.
In some embodiments, data gathering and analysis module 190 can be configured to analyze the sensor data and provide alerts the operator when a calibration is required and/or perform other actions. For example, data gathering and analysis module 190 can be configured to calculate the difference between a measurement from a tool sensor on sensor calibration tool 162 of an operational parameter and the corresponding rig sensor measurement (from a rig sensor on a surface component of surface rig system 102) of that operational parameter. Some difference may be an acceptable operational variation, but a greater difference may be an unacceptable variation indicating an out-of-calibration sensor or other condition requiring action by the operator. In some embodiments, data gathering and analysis module 190 can store a threshold value of the difference, above which above which calibration or another action is required. A difference below the threshold value would not trigger an alert; a difference above the threshold value would trigger an alert.
In some embodiments, once the alert is received, the operator can calibrate the rig sensor as necessary in light of the data from the sensor calibration tool 162. Such calibration can be done manually or automatically.
In some embodiments, data gathering and analysis module 190 can be configured to measure and record the standard deviation between tool sensor data and rig sensor data. In some embodiments, data gathering and analysis module 190 can be configured to store historical data including values from the rig sensors and the tool sensors and/or standard deviation data. In some embodiments, data gathering and analysis module 190 can be configured to compare historical data from rig sensors with historical data from tool sensors of their respective operational parameters. In some embodiments, data gathering and analysis module 190 can adjust or correct historical rig sensor data based on this comparison with historical or current tool sensor data and provide the operator with an output comprising such adjusted or corrected historical sensor rig data.
In some embodiments, sensor data from sensor calibration tool 162 can be used to train machine learning algorithms and/or otherwise used to understand and optimize drill string behavior and/or drilling optimization.
In some embodiments, the sensor calibration tool and system can be brought to a wellsite in response to an incident such as stuck pipe or twist off and installed on the well system to determine whether and the extent to which any rig sensors are out-of-calibration or otherwise inaccurate. Where similar incidents have occurred at multiple wells, the system and method can be brought to each of those wells such that historical data related to the incidents at the different wells can be analyzed, corrected, and compared using a common tool and system. By correcting historical data and comparing corrections from different rig systems (which may have significant discrepancies in rig sensor accuracy) with the same calibration tool, a better understanding of the incident(s) can be achieved and future incidents avoided. Data from the system and method can be utilized in preventative tools such as machine learning algorithms for automated operations or rig crew training.
Sensor calibration tool 162 as shown in
In the illustrated embodiment, the sensor bank illustrated in
Specifically, for example, weight tool sensor 310 can measure the weight of drill string 150, and data from weight tool sensor 310 can be compared to data from hook load rig sensor 170. Fluid pressure tool sensor 312 can measure the pressure of drilling fluid flowing through drill string 150, and data from fluid pressure tool sensor 312 can be compared to data from fluid pressure rig sensor 172. Flow tool sensor 314 can measure the flow rate of drilling fluid flowing through drill string 150 and data from flow tool sensor 314 can be compared to data from flow rig sensor 174. Temperature tool sensor 316 can measure the temperature of drilling fluid flowing through drill string 150, and data from temperature tool sensor 316 can be compared to data from temperature rig sensor 176. Torque tool sensor 318 can measure a torque load of drill string 150, and data from torque tool sensor 318 can be compared to data from torque rig sensor 178. RPM tool sensor 320 can measure the frequency of rotation of drill string 150, and data from RPM tool sensor 320 can be compared to data from RPM rig sensor 180. Vibration tool sensor 322 can measure vibrations of drill string 150, and data from vibration tool sensor 322 can be compared to data from vibration rig sensor 182. Acoustic tool sensor 324 can measure noise or other acoustic signals at or near the top of drill string 150, and data from acoustic tool sensor 324 can be compared to data from acoustic rig sensor 184.
Referring to
Like sensor calibration tool 162 of
Sensor calibration clamp tool 400 can, in some embodiments, be more easily attachable and detachable from the drill string than sensor calibration tool 162, resulting in further cost and time savings. In some embodiments, sensor bank 210 of sensor calibration clamp tool 400 may have the same suite of tool sensors as sensor calibration tool 162. In some embodiments, sensor bank 210 of calibration clamp tool 400 may have a different suite and/or a different number of tool sensors than the sensor bank of sensor calibration tool 162. For example, in some embodiments, sensor calibration clamp tool 400 can include tool sensors for torque, RPM, and vibration, but not include sensors for flow, pressure, and/or temperature.
Referring to
As described in reference to
Proceeding to block 506, the data gathering and analysis module or other suitable receiver receives a rig sensor measurement from a rig sensor positioned on a surface component of the surface rig system, of the same operational parameter that was also measured by the tool sensor operational parameter
Proceeding to block 508, a difference between the rig sensor measurement and the tool sensor measurement is determined. This can be done manually by an operator or automatically by the data gathering and analysis module.
In some embodiments, the difference can be compared to a difference threshold. If the difference threshold is exceeded, the data gathering and analysis module can transmit an alert to the operator.
Proceeding to block 510, the rig sensor is calibrated based on the comparison of the tool sensor measurement with the rig sensor measurement. Calibration can be done manually or automatically as described in reference to
In this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.
In this disclosure, “approximately” or “substantially” means a deviation or allowance of up to 10 percent (%) and any variation from a mentioned value is within the tolerance limits of any machinery used to manufacture the part. Likewise, “about” can also allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of “0.1% to about 5%” or “0.1% to 5%” should be interpreted to include about 0.1% to about 5%, as well as the individual values (for example, 1%, 2%, 3%, and 4%) and the sub-ranges (for example, 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “X, Y, or Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.
While this disclosure contains many specific implementation details, these should not be construed as limitations on the subject matter or on what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this disclosure in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any suitable sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Particular implementations of the subject matter have been described. Nevertheless, it will be understood that various modifications, substitutions, and alterations may be made. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. Accordingly, the previously described example implementations do not define or constrain this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
891957 | Schubert | Jun 1908 | A |
2043225 | Armentrout et al. | Jun 1936 | A |
2110913 | Lowrey | Mar 1938 | A |
2227729 | Lynes | Jan 1941 | A |
2286673 | Douglas | Jun 1942 | A |
2305062 | Church et al. | Dec 1942 | A |
2344120 | Baker | Mar 1944 | A |
2757738 | Ritchey | Sep 1948 | A |
2509608 | Penfield | May 1950 | A |
2688369 | Broyles | Sep 1954 | A |
2690897 | Clark | Oct 1954 | A |
2719363 | Richard et al. | Oct 1955 | A |
2795279 | Erich | Jun 1957 | A |
2799641 | Gordon | Jul 1957 | A |
2805045 | Goodwin | Sep 1957 | A |
2822150 | Muse et al. | Feb 1958 | A |
2841226 | Conrad et al. | Jul 1958 | A |
2899000 | Medders et al. | Aug 1959 | A |
2927775 | Hildebrandt | Mar 1960 | A |
3016244 | Friedrich et al. | Jan 1962 | A |
3028915 | Jennings | Apr 1962 | A |
3087552 | Graham | Apr 1963 | A |
3102599 | Hillbum | Sep 1963 | A |
3103975 | Hanson | Sep 1963 | A |
3104711 | Haagensen | Sep 1963 | A |
3114875 | Haagensen | Dec 1963 | A |
3133592 | Tomberlin | May 1964 | A |
3137347 | Parker | Jun 1964 | A |
3149672 | Joseph et al. | Sep 1964 | A |
3169577 | Erich | Feb 1965 | A |
3170519 | Haagensen | Feb 1965 | A |
3211220 | Erich | Oct 1965 | A |
3220478 | Kinzbach | Nov 1965 | A |
3236307 | Brown | Feb 1966 | A |
3253336 | Brown | May 1966 | A |
3268003 | Essary | Aug 1966 | A |
3331439 | Lawrence | Jul 1967 | A |
3428125 | Parker | Feb 1969 | A |
3468373 | Smith | Sep 1969 | A |
3522848 | New | Aug 1970 | A |
3547192 | Claridge et al. | Dec 1970 | A |
3547193 | Gill | Dec 1970 | A |
3642066 | Gill | Feb 1972 | A |
3656564 | Brown | Apr 1972 | A |
3696866 | Dryden | Oct 1972 | A |
3839791 | Feamster | Oct 1974 | A |
3862662 | Kern | Jan 1975 | A |
3874450 | Kern | Apr 1975 | A |
3931856 | Barnes | Jan 1976 | A |
3946809 | Hagedorn | Mar 1976 | A |
3948319 | Pritchett | Apr 1976 | A |
4008762 | Fisher et al. | Feb 1977 | A |
4010799 | Kern et al. | Mar 1977 | A |
4064211 | Wood | Dec 1977 | A |
4084637 | Todd | Apr 1978 | A |
4135579 | Rowland et al. | Jan 1979 | A |
4140179 | Kasevich et al. | Feb 1979 | A |
4140180 | Bridges et al. | Feb 1979 | A |
4144935 | Bridges et al. | Mar 1979 | A |
4191493 | Hansson et al. | Mar 1980 | A |
4193448 | Jearnbey | Mar 1980 | A |
4193451 | Dauphine | Mar 1980 | A |
4196329 | Rowland et al. | Apr 1980 | A |
4199025 | Carpenter | Apr 1980 | A |
4265307 | Elkins | May 1981 | A |
RE30738 | Bridges et al. | Sep 1981 | E |
4301865 | Kasevich et al. | Nov 1981 | A |
4320801 | Rowland et al. | Mar 1982 | A |
4334928 | Hara | Jun 1982 | A |
4337653 | Chauffe | Jul 1982 | A |
4343651 | Yazu et al. | Aug 1982 | A |
4354559 | Johnson | Oct 1982 | A |
4373581 | Toellner | Feb 1983 | A |
4394170 | Sawaoka et al. | Jul 1983 | A |
4396062 | Iskander | Aug 1983 | A |
4412585 | Bouck | Nov 1983 | A |
4413642 | Smith et al. | Nov 1983 | A |
4449585 | Bridges et al. | May 1984 | A |
4457365 | Kasevich et al. | Jul 1984 | A |
4470459 | Copland | Sep 1984 | A |
4476926 | Bridges et al. | Oct 1984 | A |
4484627 | Perkins | Nov 1984 | A |
4485868 | Sresty et al. | Dec 1984 | A |
4485869 | Sresty et al. | Dec 1984 | A |
4487257 | Dauphine | Dec 1984 | A |
4495990 | Titus et al. | Jan 1985 | A |
4498535 | Bridges | Feb 1985 | A |
4499948 | Perkins | Feb 1985 | A |
4508168 | Heeren | Apr 1985 | A |
4513815 | Rundell et al. | Apr 1985 | A |
4524826 | Savage | Jun 1985 | A |
4524827 | Bridges et al. | Jun 1985 | A |
4545435 | Bridges et al. | Oct 1985 | A |
4553592 | Looney et al. | Nov 1985 | A |
4557327 | Kinley et al. | Dec 1985 | A |
4576231 | Dowling et al. | Mar 1986 | A |
4583589 | Kasevich | Apr 1986 | A |
4592423 | Savage et al. | Jun 1986 | A |
4612988 | Segalman | Sep 1986 | A |
4620593 | Haagensen | Nov 1986 | A |
4636934 | Schwendemann | Jan 1987 | A |
RE32345 | Wood | Mar 1987 | E |
4660636 | Rundell et al. | Apr 1987 | A |
4705108 | Little et al. | Nov 1987 | A |
4817711 | Jearnbey | Apr 1989 | A |
5012863 | Springer | May 1991 | A |
5018580 | Skipper | May 1991 | A |
5037704 | Nakai et al. | Aug 1991 | A |
5055180 | Klaila | Oct 1991 | A |
5068819 | Misra et al. | Nov 1991 | A |
5070952 | Neff | Dec 1991 | A |
5074355 | Lennon | Dec 1991 | A |
5082054 | Kiamanesh | Jan 1992 | A |
5092056 | Deaton | Mar 1992 | A |
5107705 | Wraight et al. | Apr 1992 | A |
5107931 | Valka et al. | Apr 1992 | A |
5228518 | Wilson et al. | Jul 1993 | A |
5236039 | Edelstein et al. | Aug 1993 | A |
5278550 | Rhein-Knudsen et al. | Jan 1994 | A |
5319272 | Raad | Jun 1994 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5490598 | Adams | Feb 1996 | A |
5501248 | Kiest, Jr. | Mar 1996 | A |
5690826 | Cravello | Nov 1997 | A |
5803186 | Berger et al. | Sep 1998 | A |
5803666 | Keller | Sep 1998 | A |
5813480 | Zaleski, Jr. et al. | Sep 1998 | A |
5853049 | Keller | Dec 1998 | A |
5890540 | Pia et al. | Apr 1999 | A |
5899274 | Frauenfeld et al. | May 1999 | A |
5947213 | Angle | Sep 1999 | A |
5955666 | Mullins | Sep 1999 | A |
5958236 | Bakula | Sep 1999 | A |
RE36362 | Jackson | Nov 1999 | E |
6012526 | Jennings et al. | Jan 2000 | A |
6032742 | Tomlin et al. | Mar 2000 | A |
6041860 | Nazzal et al. | Mar 2000 | A |
6047239 | Berger et al. | Apr 2000 | A |
6096436 | Inspektor | Aug 2000 | A |
6170531 | Jung et al. | Jan 2001 | B1 |
6173795 | McGarian et al. | Jan 2001 | B1 |
6189611 | Kasevich | Feb 2001 | B1 |
6206108 | MacDonald et al. | Mar 2001 | B1 |
6254844 | Takeuchi et al. | Jul 2001 | B1 |
6268726 | Prammer | Jul 2001 | B1 |
6269953 | Seyffert et al. | Aug 2001 | B1 |
6290068 | Adams et al. | Sep 2001 | B1 |
6305471 | Milloy | Oct 2001 | B1 |
6325216 | Seyffert et al. | Dec 2001 | B1 |
6328111 | Bearden et al. | Dec 2001 | B1 |
6330913 | Langseth et al. | Dec 2001 | B1 |
6354371 | O'Blanc | Mar 2002 | B1 |
6371302 | Adams et al. | Apr 2002 | B1 |
6413399 | Kasevich | Jul 2002 | B1 |
6443228 | Aronstam | Sep 2002 | B1 |
6454099 | Adams et al. | Sep 2002 | B1 |
6510947 | Schulte et al. | Jan 2003 | B1 |
6534980 | Toufaily et al. | Feb 2003 | B2 |
6544411 | Varandaraj | Apr 2003 | B2 |
6561269 | Brown et al. | May 2003 | B1 |
6571877 | Van Bilderbeek | Jun 2003 | B1 |
6607080 | Winkler et al. | Aug 2003 | B2 |
6612384 | Singh et al. | Sep 2003 | B1 |
6622554 | Manke et al. | Sep 2003 | B2 |
6623850 | Kukino et al. | Sep 2003 | B2 |
6629610 | Adams et al. | Oct 2003 | B1 |
6637092 | Menzel | Oct 2003 | B1 |
6648082 | Schultz et al. | Nov 2003 | B2 |
6678616 | Winkler et al. | Jan 2004 | B1 |
6722504 | Schulte et al. | Apr 2004 | B2 |
6741000 | Newcomb | May 2004 | B2 |
6761230 | Cross et al. | Jul 2004 | B2 |
6814141 | Huh et al. | Nov 2004 | B2 |
6827145 | Fotland et al. | Dec 2004 | B2 |
6845818 | Tutuncu et al. | Jan 2005 | B2 |
6850068 | Chernali et al. | Feb 2005 | B2 |
6895678 | Ash et al. | May 2005 | B2 |
6912177 | Smith | Jun 2005 | B2 |
6971265 | Sheppard et al. | Dec 2005 | B1 |
6993432 | Jenkins et al. | Jan 2006 | B2 |
7000777 | Adams et al. | Feb 2006 | B2 |
7013992 | Tessari et al. | Mar 2006 | B2 |
7048051 | McQueen | May 2006 | B2 |
7063155 | Ruttley | Jun 2006 | B2 |
7086463 | Ringgenberg et al. | Aug 2006 | B2 |
7091460 | Kinzer | Aug 2006 | B2 |
7109457 | Kinzer | Sep 2006 | B2 |
7115847 | Kinzer | Oct 2006 | B2 |
7124819 | Ciglenec et al. | Oct 2006 | B2 |
7168507 | Downton | Jan 2007 | B2 |
7216767 | Schulte et al. | May 2007 | B2 |
7312428 | Kinzer | Dec 2007 | B2 |
7322776 | Webb et al. | Jan 2008 | B2 |
7331385 | Symington | Feb 2008 | B2 |
7376514 | Habashy et al. | May 2008 | B2 |
7387174 | Lurie | Jun 2008 | B2 |
7445041 | O'Brien | Nov 2008 | B2 |
7455117 | Hall et al. | Nov 2008 | B1 |
7461693 | Considine et al. | Dec 2008 | B2 |
7484561 | Bridges | Feb 2009 | B2 |
7539548 | Dhawan | May 2009 | B2 |
7562708 | Cogliandro et al. | Jul 2009 | B2 |
7629497 | Pringle | Dec 2009 | B2 |
7631691 | Symington et al. | Dec 2009 | B2 |
7647980 | Corre et al. | Jan 2010 | B2 |
7650269 | Rodney | Jan 2010 | B2 |
7677673 | Tranquilla et al. | Mar 2010 | B2 |
7730625 | Blake | Jun 2010 | B2 |
7779903 | Bailey et al. | Aug 2010 | B2 |
7951482 | Ichinose et al. | May 2011 | B2 |
7980392 | Varco | Jul 2011 | B2 |
8067865 | Savant | Nov 2011 | B2 |
8237444 | Simon | Aug 2012 | B2 |
8245792 | Trinh et al. | Aug 2012 | B2 |
8275549 | Sabag et al. | Sep 2012 | B2 |
8286734 | Hannegan et al. | Oct 2012 | B2 |
8484858 | Brannigan et al. | Jul 2013 | B2 |
8511404 | Rasheed | Aug 2013 | B2 |
8526171 | Wu et al. | Sep 2013 | B2 |
8528668 | Rasheed | Sep 2013 | B2 |
8567491 | Lurie | Oct 2013 | B2 |
8794062 | DiFoggio et al. | Aug 2014 | B2 |
8884624 | Homan et al. | Nov 2014 | B2 |
8925213 | Sallwasser | Jan 2015 | B2 |
8960215 | Cui et al. | Feb 2015 | B2 |
8973680 | MacKenzie | Mar 2015 | B2 |
9051810 | Cuffe et al. | Jun 2015 | B1 |
9109429 | Xu et al. | Aug 2015 | B2 |
9217323 | Clark | Dec 2015 | B2 |
9222350 | Vaughn et al. | Dec 2015 | B2 |
9238953 | Fleming et al. | Jan 2016 | B2 |
9238961 | Bedouet | Jan 2016 | B2 |
9250339 | Ramirez | Feb 2016 | B2 |
9353589 | Hekelaar | May 2016 | B2 |
9394782 | DiGiovanni et al. | Jul 2016 | B2 |
9435159 | Scott | Sep 2016 | B2 |
9464487 | Zurn | Oct 2016 | B1 |
9470059 | Zhou | Oct 2016 | B2 |
9494010 | Flores | Nov 2016 | B2 |
9494032 | Roberson et al. | Nov 2016 | B2 |
9512708 | Hay | Dec 2016 | B2 |
9528366 | Selman et al. | Dec 2016 | B2 |
9562987 | Guner et al. | Feb 2017 | B2 |
9617815 | Scwartze et al. | Apr 2017 | B2 |
9664011 | Kruspe et al. | May 2017 | B2 |
9702211 | Tinnen | Jul 2017 | B2 |
9731471 | Schaedler et al. | Aug 2017 | B2 |
9739141 | Zeng et al. | Aug 2017 | B2 |
9845653 | Hannegan et al. | Dec 2017 | B2 |
9885232 | Close et al. | Feb 2018 | B2 |
10000983 | Jackson et al. | Jun 2018 | B2 |
10174577 | Leuchtenberg et al. | Jan 2019 | B2 |
10233372 | Ramasamy et al. | Mar 2019 | B2 |
10329877 | Simpson et al. | Jun 2019 | B2 |
10392910 | Walton et al. | Aug 2019 | B2 |
10394193 | Li et al. | Aug 2019 | B2 |
10544640 | Hekelaar et al. | Jan 2020 | B2 |
20020066563 | Langseth et al. | Jun 2002 | A1 |
20030137430 | Chalitsios | Jul 2003 | A1 |
20030159776 | Graham | Aug 2003 | A1 |
20030230526 | Okabayshi et al. | Dec 2003 | A1 |
20040182574 | Sarmad et al. | Sep 2004 | A1 |
20040256103 | Batarseh | Dec 2004 | A1 |
20050022987 | Green et al. | Feb 2005 | A1 |
20050092523 | McCaskill et al. | May 2005 | A1 |
20050259512 | Mandal | Nov 2005 | A1 |
20060016592 | Wu | Jan 2006 | A1 |
20060106541 | Hassan et al. | May 2006 | A1 |
20060144620 | Cooper | Jul 2006 | A1 |
20060185843 | Smith | Aug 2006 | A1 |
20060248949 | Gregory et al. | Nov 2006 | A1 |
20060249307 | Ritter | Nov 2006 | A1 |
20070131591 | Pringle | Jun 2007 | A1 |
20070137852 | Considine et al. | Jun 2007 | A1 |
20070175633 | Kosmala | Aug 2007 | A1 |
20070187089 | Bridges | Aug 2007 | A1 |
20070204994 | Wimmersperg | Sep 2007 | A1 |
20070289736 | Kearl et al. | Dec 2007 | A1 |
20080007421 | Liu et al. | Jan 2008 | A1 |
20080047337 | Chemali et al. | Feb 2008 | A1 |
20080053652 | Corre et al. | Mar 2008 | A1 |
20080173480 | Annaiyappa et al. | Jul 2008 | A1 |
20080190822 | Young | Aug 2008 | A1 |
20080308282 | Standridge et al. | Dec 2008 | A1 |
20090153354 | Daussin | Jun 2009 | A1 |
20090164125 | Bordakov et al. | Jun 2009 | A1 |
20090178809 | Jeffryes et al. | Jul 2009 | A1 |
20090259446 | Zhang et al. | Oct 2009 | A1 |
20100006339 | Desai | Jan 2010 | A1 |
20100089583 | Xu et al. | Apr 2010 | A1 |
20100276209 | Yong et al. | Nov 2010 | A1 |
20100282511 | Maranuk | Nov 2010 | A1 |
20110011576 | Cavender et al. | Jan 2011 | A1 |
20110120732 | Lurie | May 2011 | A1 |
20110155368 | El-Khazindar | Jun 2011 | A1 |
20110169353 | Endo | Jul 2011 | A1 |
20110272147 | Beasley et al. | Nov 2011 | A1 |
20120012319 | Dennis | Jan 2012 | A1 |
20120111578 | Tverlid | May 2012 | A1 |
20120132418 | McClung | May 2012 | A1 |
20120152543 | Davis | Jun 2012 | A1 |
20120173196 | Miszewski | Jul 2012 | A1 |
20120186817 | Gibson et al. | Jul 2012 | A1 |
20120222854 | McClung, III | Sep 2012 | A1 |
20120227983 | Lymberopoulous et al. | Sep 2012 | A1 |
20120273187 | Hall | Nov 2012 | A1 |
20130008653 | Schultz et al. | Jan 2013 | A1 |
20130008671 | Booth | Jan 2013 | A1 |
20130025943 | Kumar | Jan 2013 | A1 |
20130076525 | Vu et al. | Mar 2013 | A1 |
20130119830 | Hautz | May 2013 | A1 |
20130125642 | Parfitt | May 2013 | A1 |
20130126164 | Sweatman et al. | May 2013 | A1 |
20130146359 | Koederitz | Jun 2013 | A1 |
20130213637 | Kearl | Aug 2013 | A1 |
20130255936 | Statoilydro et al. | Oct 2013 | A1 |
20140083771 | Clark | Mar 2014 | A1 |
20140183143 | Cady et al. | Jul 2014 | A1 |
20140231075 | Springett et al. | Aug 2014 | A1 |
20140231147 | Bozso et al. | Aug 2014 | A1 |
20140238658 | Wilson et al. | Aug 2014 | A1 |
20140246235 | Yao | Sep 2014 | A1 |
20140251894 | Larson et al. | Sep 2014 | A1 |
20140265337 | Harding et al. | Sep 2014 | A1 |
20140278111 | Gerrie et al. | Sep 2014 | A1 |
20140291023 | Edbury | Oct 2014 | A1 |
20140300895 | Pope et al. | Oct 2014 | A1 |
20140333754 | Graves et al. | Nov 2014 | A1 |
20140360778 | Batarseh | Dec 2014 | A1 |
20140375468 | Wilkinson et al. | Dec 2014 | A1 |
20150020908 | Warren | Jan 2015 | A1 |
20150021240 | Wardell et al. | Jan 2015 | A1 |
20150027724 | Symms | Jan 2015 | A1 |
20150083422 | Pritchard | Mar 2015 | A1 |
20150091737 | Richardson et al. | Apr 2015 | A1 |
20150101864 | May | Apr 2015 | A1 |
20150159467 | Hartman et al. | Jun 2015 | A1 |
20150211362 | Rogers | Jul 2015 | A1 |
20150267500 | Van Dongen | Sep 2015 | A1 |
20150290878 | Houben et al. | Oct 2015 | A1 |
20150300151 | Mohaghegh | Oct 2015 | A1 |
20160053572 | Snoswell | Feb 2016 | A1 |
20160053604 | Abbassian | Feb 2016 | A1 |
20160076357 | Hbaieb | Mar 2016 | A1 |
20160115783 | Zeng et al. | Apr 2016 | A1 |
20160130928 | Torrione | May 2016 | A1 |
20160153240 | Braga et al. | Jun 2016 | A1 |
20160160106 | Jamison et al. | Jun 2016 | A1 |
20160164377 | Gauthier | Jun 2016 | A1 |
20160237810 | Beaman et al. | Aug 2016 | A1 |
20160247316 | Whalley et al. | Aug 2016 | A1 |
20160356125 | Bello et al. | Dec 2016 | A1 |
20170051785 | Cooper | Feb 2017 | A1 |
20170161885 | Parmeshwar et al. | Jun 2017 | A1 |
20170234104 | James | Aug 2017 | A1 |
20170292376 | Kumar et al. | Oct 2017 | A1 |
20170314335 | Kosonde et al. | Nov 2017 | A1 |
20170328196 | Shi et al. | Nov 2017 | A1 |
20170328197 | Shi et al. | Nov 2017 | A1 |
20170342776 | Bullock et al. | Nov 2017 | A1 |
20170343006 | Ehrsann | Nov 2017 | A1 |
20170346371 | Gruetzner | Nov 2017 | A1 |
20170350201 | Shi et al. | Dec 2017 | A1 |
20170350241 | Shi | Dec 2017 | A1 |
20180010030 | Ramasamy et al. | Jan 2018 | A1 |
20180010419 | Livescu et al. | Jan 2018 | A1 |
20180010450 | Forstner | Jan 2018 | A1 |
20180171772 | Rodney | Jun 2018 | A1 |
20180187498 | Soto et al. | Jul 2018 | A1 |
20180265416 | Ishida et al. | Sep 2018 | A1 |
20180326679 | Weisenberg et al. | Nov 2018 | A1 |
20180334883 | Williamson | Nov 2018 | A1 |
20180363404 | Faugstad | Dec 2018 | A1 |
20190049054 | Gunnarsson et al. | Feb 2019 | A1 |
20190079210 | Ma | Mar 2019 | A1 |
20190101872 | Li | Apr 2019 | A1 |
20190227499 | Li et al. | Jul 2019 | A1 |
20190257180 | Kriesels et al. | Aug 2019 | A1 |
20190316463 | Pfrenger et al. | Oct 2019 | A1 |
20200032638 | Ezzeddine | Jan 2020 | A1 |
20200182038 | Soukup | Jun 2020 | A1 |
20200220431 | Wrighton | Jul 2020 | A1 |
20200326226 | Camacho Cardenas | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
1226325 | Sep 1987 | CA |
2249432 | Sep 2005 | CA |
2537585 | Aug 2006 | CA |
2669721 | Jul 2011 | CA |
2594042 | Aug 2012 | CA |
200989202 | Dec 2007 | CN |
203232293 | Oct 2013 | CN |
204627586 | Sep 2015 | CN |
107462222 | Dec 2017 | CN |
110571475 | Dec 2019 | CN |
102008001607 | Nov 2009 | DE |
102012022453 | May 2014 | DE |
102013200450 | Jul 2014 | DE |
102012205757 | Aug 2014 | DE |
2317068 | May 2011 | EP |
2574722 | Apr 2013 | EP |
2737173 | Jun 2014 | EP |
2124855 | Feb 1984 | GB |
2357305 | Jun 2001 | GB |
2399515 | Sep 2004 | GB |
2422125 | Jul 2006 | GB |
2532967 | Jun 2016 | GB |
2009067609 | Apr 2009 | JP |
4275896 | Jun 2009 | JP |
5013156 | Aug 2012 | JP |
2013110910 | Jun 2013 | JP |
343139 | Nov 2018 | NO |
20161842 | May 2019 | NO |
2282708 | Aug 2006 | RU |
122531 | Nov 2012 | RU |
WO 1995035429 | Dec 1995 | WO |
WO 1997021904 | Jun 1997 | WO |
WO 2000025942 | May 2000 | WO |
WO 2000031374 | Jun 2000 | WO |
WO 2001042622 | Jun 2001 | WO |
WO 2002020944 | Mar 2002 | WO |
WO 2002068793 | Sep 2002 | WO |
WO 2004042185 | May 2004 | WO |
WO 2007049026 | May 2007 | WO |
WO 2007070305 | Jun 2007 | WO |
WO 2008146017 | Dec 2008 | WO |
WO 2009020889 | Feb 2009 | WO |
WO 2009113895 | Sep 2009 | WO |
WO 2010105177 | Sep 2010 | WO |
WO 2011038170 | Mar 2011 | WO |
WO 2011042622 | Jun 2011 | WO |
WO 2012007407 | Jan 2012 | WO |
WO 2013016095 | Jan 2013 | WO |
WO 2013148510 | Oct 2013 | WO |
WO 2014127035 | Aug 2014 | WO |
WO 2015095155 | Jun 2015 | WO |
WO 2016178005 | Nov 2016 | WO |
WO 2017011078 | Jan 2017 | WO |
WO 2017132297 | Aug 2017 | WO |
WO 2017196303 | Nov 2017 | WO |
WO 2018022198 | Feb 2018 | WO |
WO 2018169991 | Sep 2018 | WO |
WO 2019040091 | Feb 2019 | WO |
WO 2019055240 | Mar 2019 | WO |
WO 2019089926 | May 2019 | WO |
WO 2019108931 | Jun 2019 | WO |
WO 2019169067 | Sep 2019 | WO |
WO 2019236288 | Dec 2019 | WO |
WO 2019246263 | Dec 2019 | WO |
Entry |
---|
Akersolutions, “Aker MH CCTC Improving Safety,” Akersolutions, Jan. 2008, 12 pages. |
Anwar et al.,“Fog computing: an overview of big IoT data analytics,” Article ID 7157192, Hindawi, Wiley, Wireless communications and mobile computing, May 2018, 2018: 1-22, 23 pages. |
Artymiuk et al., “The new drilling control and monitoring system,” Acta Montanistica Slovaca, Sep. 2004, 9:3 (145-151), 7 pages. |
Ashby et al., “Coiled Tubing Conveyed Video Camera and Multi-Arm Caliper Liner Damage Diagnostics Post Plug and Perf Frac,” SPE-172622-MS, Society of Petroleum Engineers (SPE), presented at the SPE Middle East Oil and Gas Show and Conference, Mar. 8-11, 2015, 12 pages. |
Bestebit, “IADC Dull Grading for PDC Drill Bits,” Beste Bit, SPE/IADC 23939, Society of Petroleum Engineers (SPE), International Association of Drilling Contractors (IADC), 1992, 52 pages. |
Bilal et al., “Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers,” Computer Networks, Elsevier, Oct. 2017, 130: 94-120, 27 pages. |
Carpenter, “Advancing Deepwater Kick Detection,” JPT, 68:5, May 2016, 2 pages. |
Commer et al., “New advances in three-dimensional controlled-source electromagnetic inversion,” Geophys. J. Int, 2008, 172: 513-535, 23 pages. |
Dickens et al., “An LED array-based light induced fluorescence sensor for real-time process and field monitoring,” Sensors and Actuators B: Chemical, Elsevier, Apr. 2011, 158:1 (35-42), 8 pages. |
Dong et al., “Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li7La3Zr2O12,” MDPI, Nanomaterials, 9:721, 2019, 10 pages. |
Downholediagnostic.com [online] “Acoustic Fluid Level Surveys,” retrieved from URL <https://www.downholediagnostic.com/fluid-level> retrieved on Mar. 27, 2020, available on or before 2018, 13 pages. |
edition.cnn.com [online], “Revolutionary gel is five times stronger than steel,” retrieved from URL <https://edition.cnn.com/style/article/hydrogel-steel-japan/index.html>, retrieved on Apr. 2, 2020, available on or before Jul. 16, 2017, 6 pages. |
Gemmeke and Ruiter, “3D ultrasound computer tomography for medical imagining,” Nuclear Instruments and Methods in Physics Research A 580 (1057-1065), Oct. 1, 2007, 9 pages. |
Halliburton.com [online], “Drill Bits and Services Solutions Catalogs,” retrieved from URL: <https://www.halliburton.com/content/dam/ps/public/sdbs/sdbs_contents/Books_and_Catalogs/web/DBS-Solution.pdf> on Sep. 26, 2019, Copyright 2014, 64 pages. |
Hopkin, “Factor Affecting Cuttings Removal during Rotary Drilling,” Journal of Petroleum Technology 19.06, Jun. 1967, 8 pages. |
Ji et al., “Submicron Sized Nb Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of All Solid-State Lithium Battery,” Preprints, doi:10.20944/preprints201912.0307.v1, Dec. 2019, 10 pages. |
Johnson et al., “Advanced Deepwater Kick Detection,” IADC/SPE 167990, Society of Petroleum Engineers (SPE), International Association of Drilling Contractors (IADC), presented at the 2014 IADC/SPE Drilling Conference and Exhibition, Mar. 4-6, 2014, 10 pages. |
Johnson, “Design and Testing of a Laboratory Ultrasonic Data Acquisition System for Tomography” Thesis for the degree of Master of Science in Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, Dec. 2, 2004, 108 pages. |
King et al., “Atomic layer deposition of TiO2 films on particles in a fluidized bed reactor,” Powder Technology, 183:3 (356-363), Apr. 2008, 8 pages. |
Li et al., 3D Printed Hybrid Electrodes for Lithium-ion Batteries, Missouri University of Science and Technology, Washington State University; ECS Transactions, 77:11 (1209-1218), 2017, 11 pages. |
Liu et al., “Flow visualization and measurement in flow field of a torque converter,” Mechanic automation and control Engineering, Second International Conference on IEEE, Jul. 15, 2011, 1329-1331, 3 pages. |
Liu et al., “Superstrong micro-grained poly crystalline diamond compact through work hardening under high pressure,” Appl. Phys. Lett. Feb. 2018, 112:061901, 6 pages. |
Luo et al., “Simple Charts to Determine Hole Cleaning Requirements in Deviated Wells,” IADC/SPE 27486, International Association of Drilling Contractors (IADC), Society of Petroleum Engineers (SPE), presented at the 1994 SPE/IADC Drilling Conference, Society of Petroleum Engineers, Feb. 15-18, 1994, 7 pages. |
Maurer, “The Perfect Cleaning Theory of Rotary Drilling,” Journal of Petroleum Technology 14.11, 1962, 5 pages. |
nature.com [online], “Mechanical Behavior of a Soft Hydrogel Reinforced with Three-Dimensional Printed Microfibre Scaffolds,” retrieved from URL <https://www.nature.com/articles/s41598-018-19502-y>, retrieved on Apr. 2, 2020, available on or before Jan. 19, 2018, 47 pages. |
Nuth, “Smart oil field distributed computing,” The Industrial Ethernet Book, Nov. 2014, 85:14 (1-3), 3 pages. |
Olver, “Compact Antenna Test Ranges,” Seventh International Conference on Antennas and Propagation IEEE , Apr. 15-18, 1991, 10 pages. |
Paiaman et al., “Effect of Drilling Fluid Properties on Rate Penetration,” Nafta 60:3 (129-134), 2009, 6 pages. |
Parini et al., “Chapter 3: Antenna measurements,” in Theory and Practice of Modern Antenna Range Measurements, IET editorial, 2014, 30 pages. |
petrowiki.org [online], “Hole Cleaning,” retrieved on Jan. 25, 2019, retrieved from URL <http://petrowiki.org/Hole_cleaning#Annular-fluid_velocity>, 8 pages. |
petrowiki.org [online], “Kicks,” Petrowiki, available on or before Jun. 26, 2015, retrieved on Jan. 24, 2018, retrieved from URL <https://petrowiki.org/Kicks>, 6 pages. |
Ranjbar, “Cutting Transport in Inclined and Horizontal Wellbore,” University of Stavanger, Faculty of Science and Technology, Master's Thesis, Jul. 6, 2010, 137 pages. |
Rasi, “Hold Cleaning in Large, High-Angle Wellbores,” IADC/SPE 27464, International Association of Drilling Contractors (IADC), Society of Petroleum Engineers (SPE), presented at the 1994 SPE/IADC Drilling Conference, Feb. 15-18, 1994, 12 pages. |
rigzone.com [online], “How does Well Control Work?” Rigzone, available on or before 1999, retrieved on Jan. 24, 2019, retrieved from URL <https://www.rigzone.com/training/insight.asp7insight_id=304&c_id>, 5 pages. |
Robinson and Morgan, “Effect of Hole Cleaning on Drilling Rate Performance,” Paper Aade-04-Df-Ho-42, AADE 2004 Drilling Fluids Conference, Houston, Texas, Apr. 6-7, 2004, 7 pages. |
Robinson, “Economic Consequences of Poor Solids and Control,” AADE 2006 Fluids Conference and Houston, Texas, Apr. 11-12, 2006, 9 pages. |
Ruiter et al., “3D ultrasound computer tomography of the breast: A new era?” European Journal of Radiology 81S1, Sep. 2012, 2 pages. |
sageoiltools.com [online] “Fluid Level & Dynamometer Instmments for Analysis due Optimization of Oil and Gas Wells,” retrieved from URL <http://www.sageoiltools.com/>, retrieved on Mar. 27, 2020, available on or before 2019, 3 pages. |
Schlumberger, “CERTIS: Retrievable, single-trip, production-level isolation system,” www.slb.com/CERTIS, 2017, 2 pages. |
Schlumberger, “First Rigless ESP Retrieval and Replacement with Slickline, Offshore Congo: Zeitecs Shuttle System Eliminates Need to Mobilize a Workover Rig,” slb.com/zeitecs, 2016, 1 page. |
Schlumberger, “The Lifting Business,” Offshore Engineer, Mar. 2017, 1 page. |
Schlumberger, “Zeitecs Shuttle System Decreases ESP Replacement Time by 87%: Customer ESP riglessly retrieved in less than 2 days on coiled tubing,” slb.com/zeitecs, 2015, 1 page. |
Schlumberger, “Zeitecs Shuttle System Reduces Deferred Production Even Before ESP is Commissioned, Offshore Africa: Third Party ESP developed fault during installation and was retrieved on rods, enabling operator to continue running tubing without waiting on replacement,” slb.com/zeitecs, 2016, 2 pages. |
Schlumberger, “Zeitecs Shuttle: Rigless ESP replacement system,” Brochure, 8 pages. |
Schlumberger, “Zeitecs Shuttle: Rigless ESP replacement system,” Schlumberger, 2017, 2 pages. |
Sifferman et al., “Drilling cutting transport in full scale vertical annuli,” Journal of Petroleum Technology 26.11, 48th Annual Fall Meeting of the Society of Petroleum Engineers of AIME, Las Vegas, Sep. 30-Oct. 3, 1973, 12 pages. |
slb.com' [online] “Technical Paper: ESP Retrievable Technology: A Solution to Enhance ESP Production While Minimizing Costs,” SPE 156189 presented in 2012, retrieved from URL <http://www.slb.com/resources/technical_papers/artificial_lift/156189.aspx>, retrieved on Nov. 2, 2018, 1 pages. |
slb.com' [online], “Zeitecs Shuttle Rigless ESP Replacement System,” retrieved from URL <http://www.slb.com/services/production/artificial_lift/submersible/zeitecs-shuttle.aspx?t=3>, available on or before May 31, 2017, retrieved on Nov. 2, 2018, 3 pages. |
Sulzer Metco, “An Introduction to Thermal Spray,” 4, 2013, 24 pages. |
Unegbu Celestine Tobenna, “Hole Cleaning Hydraulics,” Universitetet o Stavanger, Faculty of Science and Technology, Master's Thesis, Jun. 15, 2010, 75 pages. |
Weatherford, “RFID Advanced Reservoir Management System Optimizes Injection Well Design, Improves Reservoir Management,” Weatherford.com, 2013, 2 pages. |
Wei et al., “The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering,” Metals, 7:372, 2017, 9 pages. |
Wellbore Service Tools: Retrievable tools, “RTTS Packer,” Halliburton: Completion Tools, 2017, 4 pages. |
wikipedia.org [online] “Optical Flowmeters,” retrieved from URL <https://en.wikipedia.org/wiki/Flow_measurement#Optical_flowmeters>, retrieved on Mar. 27, 2020, available on or before Jan. 2020, 1 page. |
wikipedia.org [online] “Ultrasonic Flow Meter,” retrieved from URL <https://en.wikipedia.org/wiki/Ultrasonic_flow_meter> retrieved on Mar. 27, 2020, available on or before Sep. 2019, 3 pages. |
wikipedia.org [online], “Surface roughness,” retrieved from URL <https://en.wikipedia.org/wiki/Surface_roughness> retrieved on Apr. 2, 2020, available on or before Oct. 2017, 6 pages. |
Williams and Bruce, “Carrying Capacity of Drilling Muds,” Journal of Petroleum Technology, 3.04: 192, 1951, 10 pages. |
Xia et al., “A Cutting Concentration Model of a Vertical Wellbore Annulus in Deep-water Drilling Operation and its Application,” Applied Mechanics and Materials, 101-102: 311-314, Sep. 27, 2011, 5 pages. |
Xue et al., “Spark plasma sintering plus heat-treatment of Ta-doped Li7La3Zr2O12 solid electrolyte and its ionic conductivity,” Mater. Res. Express 2020, 7:025518, 8 pages. |
Zhan et al. “Effect of (β-to-α Phase Transformation on the Microstructural Development and Mechanical Properties of Fine-Grained Silicon Carbide Ceramics,” Journal of the American Ceramic Society 84:5 (945-50), May 2001, 6 pages. |
Zhan et al. “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites.” Nature Materials 2.1, Jan. 2003, 6 pages. |
Zhan et al., “Atomic Layer Deposition on Bulk Quantities of Surfactant Modified Single-Walled Carbon Nanotubes,” Journal of American Ceramic Society, 91:3 (831-835), Mar. 2008, 5 pages. |
Zhang et al., “Increasing Polypropylene High Temperature Stability by Blending Polypropylene-Bonded Hindered Phenol Antioxidant,” Macromolecules, 51:5 (1927-1936), 2018, 10 pages. |
Zhu et al., “Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties,” University of British Columbia; Nanomaterials, 9:1086, 2019, 10 pages. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2022/012290, dated Apr. 21, 2022, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20220220845 A1 | Jul 2022 | US |