The present invention relates to loudspeaker rigging systems and more particularly to rigging hardware for suspending a stacked array of loudspeakers of a sound reinforcement system at a predetermined location relative to an audience. The present invention has particular application in rigging a stacked array of loudspeakers wherein a vertical display between loudspeakers is desired to achieve a desired coverage and acoustic performance.
Sound systems for large venues typically involve the suspension or “flying” of stacks of loudspeakers in vertical arrays to achieve a desired acoustic output and coverage for a large audience. Such vertical stacks of loudspeakers are typically suspended and held together by rigging systems which can be attached to rigging hoists which position the stack at a desired elevation and location, typically above or in the vicinity of a performance stage. A flown stack of loudspeakers can include many speaker boxes and the rigging system for flying the stack must be strong enough to support the enormous weight of the large stack. Such rigging systems generally involve the use of metal frame elements secured to the speaker boxes that can be used to link the speakers together in a stacked arrangement and to lift the stack to an overhead flying position.
Typically, the individual speaker boxes of a vertical stack of loudspeakers held by a rigging system will have to be adjusted to meet the requirements of a particular application. Setting the proper angle between speakers, or “splay angle,” can be critical to achieving desired acoustic performance and minimizing interference between the acoustic output between speakers in the stack. Splay angles are adjusted by adjusting the linkages between the rigging frames of the stacked speakers to create a desired angle. One such adjustment method is disclosed in U.S. Pat. No. 6,640,924 issued Nov. 4, 2003 to Ian Messner (the “Messner patent”). The Messner patent discloses a rigging system wherein the splay angle is adjusted by a cam plate that pivotally extends down from the bottom front end of the side frame of one loudspeaker to engage the top front end of the side frame of the loudspeaker directly below. To set the splay angle, the cam plate must be manipulated into a cam plate receiving channel in the top of the underneath side frame and pinned when the desired cam hole is aligned with the pin hole in the under frame. This process turns out to be relatively difficult and leads to misses in the hole alignment while assembling the array. The number of pinning locations is also relatively limited.
There is a need for a rigging system for loudspeakers having splay angle adjustment capabilities that is relatively easy to assemble, and that provides a greater range and smaller increments of adjustment in the settings for the loudspeaker splay angles.
Briefly, the present invention involves a new side frame for a loudspeaker rigging system comprised of a frame structure having two top corner regions and two bottom corner regions. A pivot link and a splay adjustment link are associated with the side frame for linking the side frames with side frames of vertically adjacent loudspeakers in a stack of loudspeakers. Each of these links has a base end and a top extended end and locking pin holes at each end for pinning the links to the side frames. At least one cradling guide channel is provided in one of the top or bottom corner regions of the frame structure for receiving the base end of one of the links of an adjacent side frame. The guide channel has side walls and locking pin holes through the side walls which are positioned to align with the pin hole of the link of an adjacent frame structure that is inserted into and seated within the guide channel. Preferably, there is a correspondence in the shape of the guide channel and the base end of the link seated within the channel such that the locking pin holes in the guide channel and the base end of the link will readily align when the base of the link is dropped into the guide channel. Preferably, two cradling guide channels are provided, preferably in the two top corner regions of the frame, for receiving correspondingly-shaped base ends of both the pivot link and the adjustment link of an adjacent rigging side frame, such that, when the end of both links are dropped into the guide channels, the locking pin holes in both links and the guide channels self-align.
In a further aspect of the invention, two link stowing channels are provided in the corner regions of the frame structure vertically opposite the cradling guide channels. The link stowing channels are formed to receive a link in a stowed position within the frame structure, and each stowing channel has side walls provided with at least one pin hole for pinning the links in the stowing channels.
In another aspect of the invention, the extended end of the splay adjustment link is provided with at least two selectable pin holes at different incremental distances from the locking pin hole at the base of the link. At least one pin hole is provided in the splay adjustment link stow channel of the frame structure for receiving at least two pin holes in the extended end of the adjustment link such that, with a vertical adjustment of the splay adjustment link, a selected one of the two pin holes in the adjustment link can be pinned to the corresponding pin hole in the adjustment link stow channel to adjust or set the vertical splay angle of the side frame relative to the rigging side frame of a vertically adjacent loudspeaker. It is contemplated that an array of pin holes will be provided in the extended end of the splay adjustment link which match up with a plurality of pin holes in the adjustment link stow channel, whereby pinning one of the adjustment pin holes to one of the pin holes of the stow channel will permit the side frame to be adjusted between a multiple of selectable splay angles.
In still a further aspect of the invention, the side frame is a frame assembly which includes a center core structure which provides or forms cradling guide channel cutout regions and stow channel cutout regions. Side plates affixed to either side of the center core structure extend over these cutout regions and provide the side walls for the guide channels. Suitably, the frame assembly comprises at least two center core sections for achieving the desired structural configuration. The panel assembly is relatively easy to fabricate and assemble as compared to the steel tube construction of conventional rigging assemblies.
The preferred frame structure of the rigging side frame of the invention is disclosed in
With further reference to
It will be understood that the center core structure 13 of frame assembly 11 could be divided into more sections than shown. For example, the upper perimeter center core section could be split into two or more sections for ease of fabrication and assembly. Also, a center core structure fabricated as a single piece is considered within the scope of the invention. I will also be understood that certain aspects of the invention described below could be achieved with a unitary frame structure that is not an assembly of parts.
First, it will be appreciated that each rigging side frame of the invention, such as shown in
With further reference to
A splay adjustment link stow channel 33a and a pivot link stow channel 35a are provided in the bottom corner regions 20, 22 of frame structure 12 vertically opposite the frame structure's top guide channels 19a, 21a. As above-mentioned, these stow channels are formed by the open regions 33, 35 between the frame assembly's core sections 15,17, which are bounded by the assembly's side plates 25, 27. Pin holes 60, 62 allow the splay adjustment link and pivot link to be operatively pinned in a stowed or deployed position; pin holes 60 further allow for fine adjustments of splay angles between adjacent rigging frames. How the splay adjustment link and pivot link are operatively pinned and stowed within these channels is illustrated in
To interconnect the rigging side frames of two adjacent loudspeakers in a stack of loudspeakers, the pivot link 39 is first dropped from its stowed position shown in
Once a selected one of the splay adjustment pin holes on the splay adjustment link is matched with the corresponding pin hole in the frame's row of pin holes 60, the adjustment link is pinned in place by the locking pin 44 to lock the link into a position as shown in
In the locked position shown in
Preferably, the adjustment and pivot links 37, 39 are fabricated of steel along with the outer side plates 25, 27 of the frame assembly, while center core structure 13 of the frame assembly is fabricated of a softer material such as aluminum or a plastic material such as Delrin or polyethene. When rigging loudspeakers, the softer core material will yield to the steel links, which carry the weight of the loudspeakers. The softer core material will also help direct the nose of the link into the guide channels for alignment with the pin holes.
The use of the rigging side frames of the invention is further illustrated in
It is noted that while the most practical implementation of the invention involves providing the guide channels 19a and 21a at the top corner regions of frame structure 12 and the stow channels 33a and 35a at the bottom corner regions, reversing the channels so that the guide channels are on top and the stow channels are on the bottom of the frame is considered to be within the scope of the invention.
While the present invention is described in considerable detail in the foregoing specification, it is not intended that the invention be limited to such detail, except as necessitated by the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/536,429 filed Jan. 13, 2004, and U.S. Provisional Application No. 60/548,364 filed Feb. 27, 2004.
Number | Date | Country | |
---|---|---|---|
60536429 | Jan 2004 | US | |
60548364 | Feb 2004 | US |