1. Field of the Invention
The present invention relates to the field of connectors, more specifically to the field of backplane related connectors.
2. Description of Related Art
Backplane connectors are known. They are typically used to couple two separate boards (e.g., between a communication board and a processor board) so as to enable high speed communication between different portions of a computing system. In general, backplane connectors tend to offer dense pin fields and are configured for high data rates. For example, recent backplane designs have allowed data rates that are greater than 10 Gbps and new designs are intended to allow data rates of 20 Gbps or more.
Typically backplane connectors are provided in what is known as a mezzanine configuration or an orthogonal configuration. Mezzanine connectors are used to couple together two boards that are parallel while orthogonal connectors couple boards that are positioned at right angles (e.g., boards that are orthogonal to each other). Due to system configurations, sometimes a mid-plane design is also used to couple together two connector configurations on opposite sides of the mid-plane. For example, a mid-plane board could couple together two orthogonal connectors. Existing mid-plane designs, however, create problems as the data rates increase. Thus certain individuals would appreciate an improved connector system suitable for high data rates.
An adaptor is configured to couple a first connector to a second connector while providing an angle change between the first and second connector. The adaptor includes a first and second recess that face in opposing directions and that are configured to receive the first and second connector. A floor can be provided in the adaptor to separate the first recess from the second recess. A pin array can be positioned in the floor and the pin array can extend in two directions from the floor so as to extend into the first and second recess. The pin array includes signal terminals and ground terminals. The signal terminals can be arranged in pairs so as to provide a differential signal channel. The signal terminals are configured with first and second contact ends that are respectively positioned in the first and second recess. The first and second contact ends can be respectively configured with a first and second orientation that are at a right angle with respect to each other. Therefore, a differential pair can have first contacts in a first line and second contacts can be in a second line that is at a right angle with respect to the first line. A body portion of the signal contacts can be configured to provide a transition between the first contact end and the second contact end. The body portion can also include a feature to engage the floor. Ground terminals can also be configured to provide first contacts in a first orientation and second contacts in a second orientation with the first and second orientation 90 degrees apart. To improve electrical performance of the first connector, a ground member can be inserted into the floor. The ground member can be configured to engage multiple ground terminals so as to common the ground terminals with respect to each other. In an embodiment, the adaptor can be configured to so that the first recess includes a first and second pin array. The first pin array may be configured as discussed above and the second pin array can include terminals that are configured with contact ends in the first recess and tails that extend out of the floor but are configured to engage vias in a mid-plane.
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
The detailed description that follows describes exemplary embodiments and is not intended to be limited to the expressly disclosed combination(s). As can be appreciated, a number of features are being disclosed. It should be noted, however, that the disclosed features do not necessarily have to be used in the depicted configurations. Therefore, unless otherwise noted, features disclosed herein may be combined together to form additional combinations that were not otherwise shown for purposes of brevity. Furthermore, certain features can be combined but also may be used separately to provide a connector system that provides the desired balance between performance and cost. Thus, the depicted features have broad application.
Looking first at
As depicted, the first and second connector 20, 60 are representative of orthogonal connectors commonly used in backplane architecture. In such configurations, the orthogonal connectors include a number of terminals that are inserted into vias in the boards and can be soldered into place so as to be permanently mounted on the board. It should be noted that in both cases (soldered versions and simple press-fit versions) it is generally desirable to only insert the terminal tails into the vias once as there is the possibility of some plastic deformation which could affect subsequent installations. Thus both versions are intended to be permanent but as a practical matter a press-fit version is sometimes easier to rework. Of course the orthogonal connectors could be unsoldered if the board was reworked and but usually the soldered connection is considered permanent. In contrast, the adaptor can be considered removably coupled to the first and second connector because it does not need to be soldered. It should be noted that while such a configuration is expected to be the most common system configuration, the adaptor is not limited to working with connectors so configured. Furthermore, it should be noted that the adaptor could also be configured to be mounted to a midplane (provided the midplane included the proper holes) however the concept of mounting a housing to a circuit board is relatively known to persons of skill in the art and thus will not be discussed in detail herein.
As is common, the first and second connectors 20, 60 can be configured as the second connector 60 is depicted by including a plurality of wafers 62 supported by a housing 64. The wafers 62 can be configured to support terminals and in an embodiment the terminals can provide differential coupling via an edge to edge coupling between adjacent terminals. The terminals that provide the differential coupling are referred to as signal terminals. To provide acceptable cross-talk performance in a dense terminal configuration (e.g., greater than 50 terminals per square inch), differential pairs of terminals in the same wafer are often separated by a ground terminal. As is known, the ground and signal terminals may have different body cross sections but typically will have a more uniform contact interface, and typically are arranged in a row of contacts aligned with the wafer. Thus, a wafer in the connector can provide a row of terminals that alternate between pairs of signal terminals and a ground terminal but provides a uniform contact interface.
It should be noted, that the first and second connectors 20, 60 need not be right angle connectors. In other words, the adapter would also be suitable for use with mezzanine style connectors.
As depicted, the adaptor 100 includes a first recess 101 that accepts the first connector 20 and a second recess 102 that accepts the second connector 60. Both the first and second recess 101, 102 are defined by an external wall 105 and a floor 107 with a first side 107a and a second side 107b. As depicted, the external wall 105 extends around a perimeter of the floor 107, however in alternative embodiments the external wall could include a notch or gap that would allow for improved air flow over the terminals. The advantage of having the external wall extend around the perimeter is that an enclosed socket can be provided that is substantially protected from external dust or allowing external items contact the terminals. This has been determined to be of greater interest in the event the adaptor is not positioned in an aperture of a midplane. It should be noted that any desirable perimeter shape for the external wall could be used (e.g., non-rectangular perimeter shapes) but the depicted perimeter shapes tend to be more suitable for use with the right angle connectors
The floor 107 supports a terminal array 120 that includes at least a ground terminal and a pair of terminals that are configured to provide a differential signal pair. For example, the terminal array 120 can include a first terminal 121, a second terminal 122 and a third terminal 123 where the first and second terminals 121, 122 are configured to provide a differential signal pair and the terminal 123 provides a ground terminal. The first, second and third terminals 121, 122, 123 each have a first contact 124 in a first row 126a. As depicted, the first contacts 124 have a rectangular shape and are in a first orientation. The first and second terminals 121, 122 also have a second contact 125 in a second row 126b and the first row 126a is perpendicular to the second row 126b. The signal terminals 121, 122 also include a body portion 128 that couples the first and second contact 124, 125 and the body portion provides the right angle transition between the first and second contact 124, 125. The body portion can be mounted in the floor 107 and thus serves to support the first contacts 124 in the first recess 101 and to also support the second contacts 125 in the second recess 102.
As depicted, the third terminal 123 is a ground terminal with a first leg 123a coupled to a second leg 123b by a body 127. As depicted, the first and second leg 123a, 123b and the body 127 form an “H” shaped terminal. While not required,
While it is advantageous to electrically isolate one pair of differential signal pair of terminals from another pair of differential signal pair of terminals, it is generally undesirable to isolate one ground terminal from another. For one thing, if the ground terminals are isolated, the unintended modes present in the connector place energy on the ground terminal and this energy will tend to create voltage differences between the ground terminal and some reference ground, thus potentially creating an energy reflection as the ground terminal encounters impendence discontinuities (such as when the ground terminals couple to other terminals). Therefore, it is has been determined that it can be advantageous to common ground terminals. Such commoning is relatively straightforward in a connector configured for singled-end signaling but becomes more challenging in a connector configured for differential signaling. As depicted, however, the commoning of grounds terminals can be partially accomplished by using the first and second leg 123a, 123b joined by the body 127. To provide further commoning and thus further lower any potential difference between one ground and a reference ground, a commoning bar 140 with fingers 141 that couple to one of the legs of the ground terminal can extend between rows and in an embodiment may be positioned between every other row while having fingers 141 that extend in opposing directions. It should be noted that the bar 140, while in certain embodiments can be formed from a unitary metal material, can also be formed in multiple pieces and can be made formed from other conductive materials, such as plated plastics, conductive plastics, energy dampening conductive materials and the like.
As can be appreciated, while the construction of the connector 300 is similar to the construction of connector 100, a first recess 301 is smaller than a second recess 302. The second recess 302 includes a first terminal array 320a and a second terminal array 320b, however the second terminal array 320b does not extend into the first recess but instead terminates into a via array 244 that includes plated vias 245 that receive tails from the terminals in the second terminal array 320b. The plated vias 245 can then be coupled to ground planes and signal traces in a conventional manner. Thus, as can be appreciated, the connector 300 enables coupling between two right angle connectors that are rotated 90 degrees with respect to each other while also allowing for mid-plane engagement. Thus, a system that includes one or both of the connectors 100, 300 can offer significant architectural flexibility while enabling high data rates.
It should be further noted that in certain embodiments of the connector 100, a first recess 101′ and a second recess 102′ might be configured to accept connectors with different wafer configurations. For example, the first recess 101′ could be configured to mate with a 3 wafer connector where each of the 3 wafers included 8 differential pairs (e.g., a 3×8 connector). The second recess 102′ could be configured to mate to a 4 wafer connector where each of the 4 wafers included 6 differential pairs (e.g., a 4×6 connector). Other possible variations include a 4×10 connector being converted to a 5×8 connector or a 6×10 connector being converted to a 5×12 connector. Thus, the connector on one side could be provided as a low profile connector while the other side could be more square-like. As can be appreciated, the ability to modify the shape of the array between two sides offers significant benefits with regarding to architectural flexibility while maintaining the number of differential pairs.
To allow the two connector assemblies 1030, 1050 to releasably mate, the second connector assembly includes a header housing 1080 that has contacts 1086 extending from wall 1084 in a first recess 1081a (
To help support the wafers in the corresponding recesses 1081a, 1081b, an alignment feature 85 (which may be a groove or projection) can be provided in a side 1083 of the recesses and the alignment feature 85 engages a corresponding projection or groove in the wafer.
It should be noted that while a
Thus, the first connector assembly 1030 can be fixed to the first board 1120 and the second connector assembly 1050 can be fixed to the second board 1122 while the two connector assemblies 1030, 1050 can be mated by inserting the daughter-card housing 1040 into the header housing 1080. As header housing is fixed to the wafers 1055, which are in turn fixed to the second board 1122, the depicted system allows a connection that previously could only be accomplished via a midplane architecture that required the use of two releasably mateable connections and a minimum of three separate solder operations. In contrast to prior designs, however, the depicted configuration allows for the use of a single releaseably mateable connection and two solder operations (assuming that each board is considered a separate solder operation).
As can be appreciated, the terminals 1036 are rotated 90 degrees from the terminals 1057 about the common plane formed by coupler 1100. As has long been appreciated, when two sets of terminals that are orientated 90 degrees apart are joined via a common plane, the connection through the common plane needs to handle the transition. For systems where the terminals on both sides are in a particular pattern (such as in a row that has a conventional repeating ground, signal, signal pattern), this most readily can be accomplished by having terminals on both sides rotate 45 degrees at the point where they couple to the coupler 1100. Of course, other angles, such as 40/50 or 30/60 would also work. In addition, the plated thru-hole could internally handle the 90 degree angle change (although this would tend to slightly increase the distance the plated thru-hole would travel).
As can be appreciated from
To support the contacts, the wall 1084 includes contact channels 1088, which may include signal contact channels 1088a and ground contact channels 1088b. As can be appreciated, if the ground terminals include the body B1, then the ground contact channel 1088b will include a corresponding design.
It should be further noted that in another embodiment, a conventional pin-header 1080′, as illustrated by the exploded cross-section depicted in
The disclosure provided herein describes features in terms of preferred and exemplary embodiments thereof. Numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/053770 | 10/22/2010 | WO | 00 | 7/2/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/050277 | 4/28/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6540522 | Sipe | Apr 2003 | B2 |
6851980 | Nelson et al. | Feb 2005 | B2 |
7331801 | Eichorn | Feb 2008 | B1 |
7540744 | Minich | Jun 2009 | B1 |
20020160658 | Sipe | Oct 2002 | A1 |
20020192988 | Droesbeke et al. | Dec 2002 | A1 |
20030124910 | Nelson et al. | Jul 2003 | A1 |
20050239332 | Maegawa et al. | Oct 2005 | A1 |
20060276081 | Cohen et al. | Dec 2006 | A1 |
20080280494 | Martich | Nov 2008 | A1 |
20090203261 | Ikegami et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
2008-0012189 | Feb 2008 | KR |
Entry |
---|
International Search Report for PCT/US2010/053770. |
Number | Date | Country | |
---|---|---|---|
20120264334 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
61297635 | Jan 2010 | US | |
61254320 | Oct 2009 | US |