The invention is directed to a tool for servicing S-cam braking mechanisms. In particular, the invention is directed to an S-cam brake service tool that provides beneficial angular configurations for expedited maintenance of S-cam brakes and enhanced safety for brake technicians.
In the transportation sector, spring brake mechanisms are widely recognized as a safe and reliable means of stopping heavy trucks and large commercial vehicles (the terms “vehicle” and “truck” shall be used interchangeably herein). Spring brakes use compressed air to make the brakes work: they are applied when air pressure is released, and disengaged when air pressure is supplied. Generally, a brake drum mechanism of a truck or equivalent spring brake vehicle is fixed on an axle for synchronous rotation, as depicted in
Spring brakes were designed so there would always be a fail-safe method of stopping an air brake vehicle, if for some reason, all air supply pressure were suddenly lost while the vehicle is in motion. This forms an emergency brake action to stop a vehicle in motion should the air supply fail. A parking brake valve (for instance, on the cab dash) releases the air pressure in the spring brake chambers, and the powerful spring applies hundreds of pounds of brake force on the push rod, thereby actuating the slack adjuster and setting the brakes.
When the brakes are used, the brake shoes force the brake linings to move outward and press the inner sides of the brake drum and thus produce a great frictional force to reduce truck speed or stop the truck altogether. These brake linings will gradually degrade after repeated use, and the brake shoes must be replaced in order to maintain the function of the braking system and ensure safety of driving. During the course of brake maintenance, it becomes necessary to remove the return spring from the brake shoe, although elevated tension in the spring (as much as 2,500 lb) renders this task difficult and dangerous.
Tools relating to brake springs tend to focus on different methods of gripping the brake spring. Some tools provide ease of use and/or construction simplicity. Some brake tools use a simple V-shaped cut with which to push on the spring. This allows an unsecured hold on the spring that sometimes results in inadvertent release of the spring. Such a slip can be dangerous to the repair person. Improved tools combine modified V-shaped cuts or other solutions for removing brake springs.
One known brake tool for assisting brake technicians in the removal and installation of S-cam brake shoes is disclosed by U.S. Pat. No. 7,676,896 to Carscadden. Carscadden discloses a brake tool having an elongate shaft having an upper end with an elongated, tapered neck and a narrow, flattened stem at a distal end thereof. A C-shaped gripping member is attached to the stem and provided co-planar therewith for gripping of a return spring thereby. A technician uses the S-cam as a fulcrum for the shaft to thereby stretch the return spring as needed for removal and attachment during brake servicing.
Carscadden, like other prior art, does not address the need for brake technicians to not only have an efficient means of maintaining S-cam braking mechanisms but also for such technicians to do so reliably and safely, There exists a need to provide a tool for servicing the S-cam brake assembly in a reliable and secure manner, regardless of the support surface on which the brake assembly is mounted (i.e., on an axle, on a table or like support surface, etc.). Such a tool should be readily fabricated from commercially available materials and amenable for use with existing commercially available braking mechanisms. The present invention now satisfies these needs.
According to an aspect of the invention, a brake tool for servicing a variety of S-cam braking mechanisms is provided. The brake tool comprises an essentially elongate member of generally uniform thickness and having opposed gripping and engagement portions separated by a predetermined lateral distance. An elevation portion intermediate the gripping and engagement portions and coextensive with the predetermined lateral distance has a predefined gripping angle relative to the gripping portion as well as a predetermined engagement angle relative to the engagement portion. The engagement portion includes a transition portion of predetermined length having a predetermined transition angle relative to an engagement means. The engagement means is defined at a distalmost portion of the transition portion for engagement of a return spring shaft of a braking mechanism.
According to another aspect of the invention, the engagement means for engaging the return spring shaft of a braking mechanism includes a forked head having a pair of tines joined by a bridge section. The tines have a predefined space therebetween for engaging the return spring shaft, such that the spring shaft abuts the bridge section and the tines support at least a spring coil of the return spring upon insertion of the brake tool through an aperture in a brake shoe (such as during servicing of the braking mechanism).
Another aspect of the invention relates to a method for servicing an S-cam braking mechanism, which comprises engaging a return spring shaft of an S-cam braking mechanism with the brake tool as described herein such that return spring shaft abuts the engagement extent; and applying pressure to the gripping portion of the brake tool during the engaging step such that a return spring is at least partially compressed for removal or insertion thereof relative to the braking mechanism.
When a technician applies pressure to the gripping portion, the brake tool utilizes the S-cam (or, alternatively, the brake shoe) as a fulcrum for release of the return spring from the brake shoe to which it is detachably connected as well a reinsertion of the spring when maintenance of the brake mechanism is completed. The technician can thereby safely and quickly remove and replace the return spring in a predictable and repeatable manner, thereby not only improving safety conditions for the technician but also substantially reducing the time required for maintenance of the braking mechanism.
The method further comprises disposing the gripping portion proximate a user of the tool and disposing the engagement extent proximate the return spring during the engaging and applying. The method also comprises engaging at least one corresponding aperture in the braking mechanism with at least one coil of the return spring having a hook integral therewith for this purpose.
Other aspects of the present invention will become readily apparent from the following Detailed description.
Further details of the invention become apparent in the following detailed description and appended drawings, wherein:
Now referring to the figures, wherein like numbers represent like elements,
The engagement portion 104 has a predetermined length that is greater than that of the gripping portion 102. Gripping portion 102 has a predetermined length l in a range of about 7″±1″, and engagement portion 104 has a predetermined length l′ in a range of about 9″±1″.
Engagement portion 104 transitions into engagement extent 104a along a transition portion 106 having a predetermined length″ and a predetermined transition angle β. Transition length l″ is provided in a range from about 1″ to about 1.5″ and more preferably in a range of about 1.25″±0.25″. Transition angle β is provided in a range of about 45°±5° relative to an engagement means defined at a distalmost portion of transition portion 106, as will be further described herein.
Gripping portion 102 is displaced from engagement portion 104 by a predetermined lateral distance D that is coextensive with an elevation portion 108 intermediate the gripping and engagement portions. Lateral distance D is provided in a range from about 4″ to about 7″ and more preferably in a range of about 6″±0.5″. Elevation portion 108 has a predefined gripping angle θ relative to gripping portion 102 and a predetermined engagement angle Φ relative to engagement portion 104. Gripping angle θ is provided in a range from about 75° to about 90″ and more preferably in a range from about 75° to less than 90°. Engagement angle Φ is provided in a range from about 75° to about 105° and more preferably in a range of about 90°±5°.
These ranges of distances and angles provide a brake tool that is readily used with a variety of commercially available S-cam and equivalent braking mechanisms. It is understood, however, that these ranges can be adapted for custom braking mechanisms while retaining the operability of the present invention spring brake tool.
Brake tool 100 is desirably fabricated as a single member having a generally uniform thickness t therealong (i.e., at least through gripping portion 102, engagement portion 104 and elevation portion 108). The thickness is desirably in a range of about ¼″±¼″. Brake tool 100 may be fabricated from 4140 cold-rolled steel alloy, although it is understood that the tool may be fabricated from any metal, composite and any other material (or combination thereof) amenable to use of the tool as intended. It is also understood that although brake tool 100 is desirably fabricated as a single member, it may comprise two or more connectable members wherein connection is facilitated by known securement means.
An exemplary engagement means is shown as a forked head 116 for engagement with a return spring shaft (such as shaft 408a of return spring 408 shown in
Although tines 116b are depicted as generally symmetrical linear members, it is understood that the engagement means may comprise any configuration amenable to engagement with all or a portion of a return spring and/or return spring shaft. Such configuration may not necessarily be symmetrical nor linear but will provide sufficient support for engagement and retention of the return spring for the duration of service by the technician. Forked head 116 is desirably co-fabricated with at least engagement portion 104, although it is understood that that the forked head may comprise a detachable member that is detachably secured with engagement portion 104 by any known securement means that is amenable to practice present invention.
Now referring to
Optionally, gripping portion 102 of brake tool 100 may be also used as a pry bar o install or remove the rollers of braking mechanism 400 (such as rollers 22 depicted in
Brake tool 100 pray optionally be used in servicing other elements of S-cam braking mechanism 400.
It is noted that the configuration of brake tool 100 permits servicing of S-cam brake assemblies on a variety of surfaces, including but not limited to work tables, axles and other support surfaces. The configuration of brake tool 100 also permits servicing of S-cam brake assemblies on vehicles, thereby saving technicians additional time. The present invention ensures adequate definition of a lever and fulcrum relative to the S-cam brake assembly to ensure predictable and repeatable removal and installation of the return spring among various brake assemblies. Such operation is desirably conducted a safe distance from the S-earn brake assembly to ensure the safety of the technician without sacrificing the efficiency of the brake service operation.
It is further noted that brake tool 100 is amenable to servicing multiple S-cam components as described and shown herein with respect to brake tool 100. One tool is amenable to the installation, removal, servicing and adjustment of one or more of brake springs, rollers, brake shows and drums, slack adjusters and locking clips without the need for additional tools.
The disclosed brake tool therefore not only promotes technician safety but also optimizes the resources expended by technicians in monetary investments of tools and temporal investments of locating such tools for use in separate service procedures. A single tool can now be used for such procedures.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value as well as equivalent units of that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm” as well as “1.58 inches”. In addition, the dimensions and values disclosed herein accommodate successful use of the present invention with a variety of commercially available S-cam braking mechanisms. The disclosure of such dimensions and values, however, shall not preclude use of the present invention tool with customized braking mechanisms having dimensions and values outside of the prescribed ranges.
Every document cited herein, including any cross-referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it is obvious to those skilled in the art that various changes can be made without departing from the spirit and scope of the invention. It is therefore intended to cover all such changes that are within the scope of this invention in the appended claims.
Number | Date | Country | |
---|---|---|---|
61660534 | Jun 2012 | US |