1. Field of the Invention
The present invention generally relates to an electrical connector, the electrical connector may mate with a complementary connector in two opposite direction.
2. Description of Related Art
USB Type-C association published two different receptacle connectors on Aug. 11, 2014. Each of the two receptacle connectors may mate with a corresponding plug connector in two opposite directions. One of the aforementioned receptacle connectors is mounted on a printed circuit board in a vertical way, and the other one is mounted on a printed circuit board in a lay way. The receptacle connector has a tongue board and two row of terminals retained at two opposite sides thereof. The terminals has a plurality of contacting portions exposed on two opposite sides of tongue board and a plurality of connecting legs extending beyond of the tongue board. Each row of the terminals has a ground terminal, a power terminal, and a pair of signal terminals, disposed therebetween. The connecting legs of the each row of terminals are disposed at a same row, and the dimension of the receptacle connector is large.
A small size electrical connector is desired.
Accordingly, an object of the present invention is to provide an electrical connector with a small size.
In order to achieve the object set forth, an electrical connector comprises an insulating housing, a plurality of first terminals retained in the insulating housing, a plurality of second terminals retained in the insulating housing, and a shielding shell shielding around the insulating housing. The insulating housing has a base portion and a mating portion extending forwardly from the base portion along a front-to-back direction, and the base portion has a mounting surface. The first terminals have connecting legs extending out of the mounting face. The first terminals have a pair of differential signal terminals, a power terminal, and a grounding terminal. The power terminal and the grounding terminal are disposed at two opposite sides of the pair of differential signal terminals, respectively. The second terminals have connecting legs extending out of the mounting face. The second terminals have a pair of differential signal terminals, a power terminal, and a grounding terminal. The power terminal and the grounding terminal are disposed at two opposite sides of the pair of differential signal terminals, respectively. The connecting legs of the power terminals and the grounding terminals are disposed at the middle area of the mounting surface, and the connecting legs of the differential signal terminals are respectively disposed at two opposite sides of the connecting legs of the power terminals and the grounding terminals.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
Referring to
Referring to
The conductive terminals 2 are roughly configured as L shaped and each has a middle portion 203 connecting with the contacting portion 201 and the connecting leg 202, thereby the contacting portions 201 of the conductive terminals 2 are arranged along the first direction, and the connecting legs 202 of the conductive terminals 2 are arranged along the front to back direction. In this condition, the first terminals 21 has a shortest terminal disposed in the innermost side and a longest terminal disposed in the outermost side. The length of the first terminals 21 is gradually increasing from the shortest terminal to the longest terminal. In fact, the contacting portions 201 of the first terminals 21 have the same length, but the middle portions 203 of the first terminals 21 have different length. The shielding plate 4 is roughly configured as L shaped. Part of the shielding plate 4 is disposed between the contacting portions 201 of the two rows of conductive terminals 21, 22, another part of the shielding plate 4 is disposed between the middle portions 203 of the two rows of conductive terminals 21, 22. The longest terminal of the first terminals 21 is a grounding terminal 211. The head of the grounding terminal 211 contacts with the shielding plate 4. The grounding terminal 211 has a first contacting section 2033 and a second contacting section 2034 both extending outwardly from the middle portion 203 thereof. Part of the middle portion 203 of the first terminal 21 outwardly expands relative to the contacting portion 201 so as to enlarge the distance between the first terminals 21 and the second terminals 22, thereby the middle portion 203 of the first terminal 21 has an expanding portion 2031 outwardly extending and a connecting portion 2032 connecting the expanding portion 2031 to the contacting portion 201 and extending in a same plane with the contacting portion 201. The first contacting section 2033 extends from the connecting portion 2032, and the second contacting section 2034 extends from the expanding portion 2031. The shielding plate 4 has two extending plates 40 respectively contacting with the first contacting section 2033 and the second contacting section 2034. In some embodiments, the first contacting section 2033, the second contacting section 2034 and the two extending plates 40 may all contact with the shielding shell 3. The first contacting section 2033 and the second section 2034 or the two extending plates 40 may all or signally contact with the shielding shell 3. The first and second contacting sections 2033, 2034 and the two extending plates 40 also may not contact with the shielding shell 3. The insulating housing 1 has two receiving slots 13 in which the first and second contacting sections 2033, 2034 and the extending plates 40 received. In the present embodiment, the first contacting section 2033, the second contacting section 2034 and the extending plate 40 all do not contact with the shielding shell 3. The row of the second terminals 22 and the row of the first terminals 21 are mirror symmetrical. The middle portion 203 of the outermost grounding terminal 221 also provided with expanding portion 2031, connecting portion 2032, first contacting section 2033 and second contacting section 2034.
Referring to
Referring to
In the assembly process, the terminal module 10 is assembled to the shielding plate 3 along a back-to-front direction, and then bending the rear cover 33 to cover the rear face of the insulating housing 1.
Referring to
The connecting legs 210′ of the first terminals 21′ are arranged in a row along the front to back direction, and the connecting legs 220′ of the second terminals 22′ are arranged in a different row along the front to back direction. The connecting legs 210′, 220′ are all configured as through hole type. The distance L1′ between two adjacent connecting legs 210′ of the first terminals 21 are equal, and the distance L2′ between two adjacent connecting legs 220′ of the second terminals 22 are equal. It needs to note that the distance L1′ and the distance L2′ are equal. The distance L1′(L2′) in the present embodiment is longer than the distance L1(L2) in the first embodiment.
Referring to
The first terminals 21″ have at least a pair of signal terminals 21S, a power terminal 21P disposed at a side of the pair of the signal terminals 21S and a grounding terminal 21G disposed at the other side of the pair of the signal terminals 21S. The connecting leg 210P of the power terminal 21P and the connecting leg 210G of the grounding terminal 21G are arranged in a row in a inner side, and the connecting legs 210S of the pair of the signal terminals 21S are arranged in a different row and in an outer side relative to the connecting legs 210P, 210G of the power terminal 21P and the grounding terminal 21G. The connecting legs 210P, 210G of the power terminal 21P and the grounding terminal 21G respectively extends downwardly from the middle portions 203″ of the power terminal 21P and the grounding terminal 21G, and the connecting legs 210P, 210G are configured as through hole type. The connecting legs 210S of the signal terminal 21S bends and extends outwardly from the middle portions 203″ of the signal terminal 21S, and the connecting leg 210S is configured as surface mounting type. In the front to back direction, the distance L3 between the two adjacent connecting legs of first terminals 21″ is equal. The sequence of the adjacent connecting legs are 210G-210S-210S-210P, it can be seen clearly in
Referring to
The difference between the present embodiment and the third embodiment is the type of the connecting legs 410S, 420S of the signal terminals 41S, 42S and the distance between the adjacent connecting legs of the terminals 41, 42. The sequence of the connecting legs of the two rows of the terminals 41, 42 are 410G-410S-410S-410P and 420G-420S-420S-420P. The connecting legs 410G, 410S, 410P of the power terminal 41P, grounding terminal 41G and the signal terminals 41S of the first terminals 41 are configured as through hole type. The connecting legs 410S of the signal terminals 41S are disposed at an outer side relative to the connecting legs 410G, 410P of the power terminal 41P and the grounding terminal 41G. In the front to back direction, the distance L4 between two adjacent connecting legs 410S of the signal terminals 41S is longer than the distance L6 between two adjacent connecting legs of the signal terminal 41S and power terminal 41P, the distance L4 between two adjacent connecting legs 410S of the signal terminals 41S is also longer than the distance L5 between two adjacent connecting legs of the signal terminal 41S and grounding terminal 41G. The type of the second terminals 42 is the same as the type of the first terminals 41. The type of the connecting legs 420S, 420G, 420P of the second terminals 42 are correspondingly the same as the type of the connecting legs 410S, 410G, 410P of the first terminals 41, thereby the connecting legs of the row of the second terminals 42 and the connecting legs of the row of the first terminals 41 are mirror symmetrical.
In the four aforementioned embodiments of the present invention, in condition of meeting the normal requirements of the soldering and high frequency transmission, the length of the products is gradually increasing as follows: the electrical connector 100 of the first embodiment, the electrical connector 300 of the third embodiment, the electrical connector 400 of the fourth embodiment, and the electrical connector 200 of the second embodiment. The area of the mounting surfaces 1000, 2000, 3000, 4000 of the electrical connectors 100, 200, 300, 400 follows the same regulation of length of the products aforementioned. In other embodiments, the connecting legs of the first terminals 21, 21′, 21″, 41 and the second terminals 22, 22′, 22″, 42 do not have to be arranged as mirror symmetrical.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrated only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2015 2 0543432 U | Jul 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6039583 | Korsunsky | Mar 2000 | A |
6935870 | Kato | Aug 2005 | B2 |
7435110 | Xiao | Oct 2008 | B2 |
7462071 | Wu | Dec 2008 | B1 |
8007294 | Tanaka | Aug 2011 | B2 |
8033840 | Wang | Oct 2011 | B2 |
8808029 | Castillo | Aug 2014 | B2 |
8932081 | Kamarauskas | Jan 2015 | B2 |
9147975 | Shiratori | Sep 2015 | B2 |
9276340 | Amini et al. | Mar 2016 | B2 |
9356370 | Lee et al. | May 2016 | B2 |
9472902 | Kao | Oct 2016 | B2 |
9496653 | Little | Nov 2016 | B2 |
20110237134 | Gao | Sep 2011 | A1 |
20120015561 | Tsai | Jan 2012 | A1 |
20130330976 | Simmel | Dec 2013 | A1 |
20140073183 | Golko | Mar 2014 | A1 |
20140113493 | Funamura | Apr 2014 | A1 |
20140194005 | Little | Jul 2014 | A1 |
20140220827 | Hsu | Aug 2014 | A1 |
20150171562 | Gao | Jun 2015 | A1 |
20150340782 | Amini | Nov 2015 | A1 |
20150340783 | Lee | Nov 2015 | A1 |
20150380870 | Kao | Dec 2015 | A1 |
20160181722 | Tsai | Jun 2016 | A1 |
20160268746 | Tsai | Sep 2016 | A1 |
20160352051 | Tsai | Dec 2016 | A1 |
20160352052 | Yu | Dec 2016 | A1 |
20160365655 | Tsai | Dec 2016 | A1 |
20160372850 | Tsai | Dec 2016 | A1 |
20170018883 | Chen | Jan 2017 | A1 |
20170025772 | Yu | Jan 2017 | A1 |
20170033507 | Tsai | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
204835065 | Dec 2015 | CN |
M337162 | Jul 2008 | TW |
M434319 | Jul 2012 | TW |
Number | Date | Country | |
---|---|---|---|
20170025772 A1 | Jan 2017 | US |