This invention relates to composite structures that retain their structural integrity despite exposure to the wear erosive and/or corrosive effects of sudden high pressures, high-pressure friction forces and high temperatures typically associated with their use, particularly within the interior of the structure. The present invention may be especially adapted for use in gun barrels, piston cylinders, pipes or other composite structures where the retention of structural integrity despite exposure to such brisant forces is an integral component of their ordinary application.
Gun barrels for example, are structures that have typically been constructed of metallic materials that are incorporated to accommodate a projectile or bullet that may then be propelled out of the barrel as a result of an exploding cartridge in the breech end of the structure. During this firing process, brisant forces, including high pressure and elevated temperatures, resulting from the hot gases released from the cartridge and friction and distortion energy created between the bullet and internal circumference of the barrel, are suddenly exerted on the barrel as the bullet travels along and out of the barrel. Gun barrels that are consistently exposed to these brisant forces, such as machine gun barrels that expend hundreds of rounds per minute, are more prone to losing their original structural integrity as the metallic material begins to expand and warp as a result of elevated temperatures exerted on the barrel or the barrel becomes clogged with an accumulation of lead and/or copper that breaks away from projectiles as they exit the barrel. This is of particular concern in gun barrels where the diameter of the barrel expands such that the internal circumference of the barrel no longer holds enough compression to effectively launch a projectile, or the projectile falls short of the desired distance, rendering the gun ineffective. Alternatively, gun barrels have also been known to explode and cause physical injury or death to their operators as a result of deformed, warped or clogged barrels. These concerns have become increasingly significant as advancements have been made in ballistics which have produced higher powered propellants, higher muzzle velocity, higher rates of fire and so forth, making the probability of these phenomena more likely.
In response to these phenomena, many attempts have been made to produce barrels made of tough, high strength materials that can accommodate such advancements and are capable of withstanding the detrimental effects of sudden high pressures and temperatures normally associated in ordinance use. Despite concerted efforts, many of these developments have yet to prove effective in their application because materials that yield high strength characteristics may conversely have very low toughness properties making the barrel brittle and more susceptible to breaking or exploding, while materials that exhibit high toughness properties may conversely exhibit low hardness making them more susceptible to erosion.
The present invention is a rigid composite structure that is resistant to wear and able to retain its structural integrity when exposed to high temperatures and high pressures. This is achieved through the incorporation of high strength, high toughness crystalline materials and their subsequent structural arrangement. The structural arrangement and selected materials used serve to enhance the structures low co-efficient of thermal expansion, low friction refractory, high hardness, and chemical inert properties which in turn provide better retention of structural integrity and resistance to wear.
The invention comprises a bore formed in a metallic material. The metallic material may comprise of one or more of the following materials: aluminum, titanium, a refractory metal, steel, stainless steel, Invar 36, Invar 42, Invar 365, a composite, a ceramic, carbon fiber or combinations thereof. In some embodiments, the metallic material may exhibit a low co-efficient of thermal expansion. The bore forms a longitudinal axis and encases a super hard geometric segment or segments. The metallic material assists to support the segments structurally and may also be shrink wrapped around the segments to hold them under compression.
The super hard geometric segment or segments may be arranged co-axially adjacent one another along the longitudinal axis and within the bore. The segment or segments may comprise natural diamond, synthetic diamond, polycrystalline diamond, single crystalline diamond, cubic boron nitride or composite materials. These materials may have low thermal expansion characteristics and are typically chemically inert which further enhances the structure's ability to retain its structural integrity. The segment or segments may remain in place within the bore being interposed between both a shoulder and biased end of the bore or by brazing each segment together. The brazed material may comprise gold, silver, a refractory metal, carbide, tungsten carbide, niobium, titanium, platinum, molybdenum, Nickel Paladiium, cadmium, cobalt, chromium, copper, silicon, Zinc, lead, Manganese, tungsten, platinum or combinations thereof. Alternatively, the segments may be held in place by shrink wrapping the metallic material around the segments such that the segments are held under radial compression within the bore and axial compression along the bore.
An intermediate material may serve as a transition layer between the metallic material and the segments. The intermediate material may comprise Invar 36, Invar 42, Invar 365, a composite, a ceramic, a refractory metal, carbon fiber or combinations thereof. The transition layer may also serve as a thermal insulator when wrapped in between the metallic material and the segments to reduce thermal expansion of the metallic material and assist in maintaining the structural integrity of the composite structure. In order to promote metallurgical bonding between the metallic material and the segments, as well as the intermediate material, a binder may be used. The binder may comprise cobalt, nickel, iron, tungsten, tantalum, molybdenum, silicon, niobium, titanium, zirconium, a refractory group metal or combinations thereof.
This new composite structure is capable of withstanding hot, highly corrosive environments while at the same time also being capable of withstanding substantial pressure and structural stresses as a result of continued use and friction.
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following, more detailed description of embodiments of the apparatus of the present invention, as represented in the Figures is not intended to limit the scope of the invention, as claimed, but is merely representative of various selected embodiments of the invention.
The illustrated embodiments of the invention will best be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. Those of ordinary skill in the art will, of course, appreciate that various modifications to the apparatus described herein may easily be made without departing from the essential characteristics of the invention, as described in connection with the Figures. Thus, the following description of the Figures is intended only by way of example, and simply illustrates certain selected embodiments consistent with the invention as claimed herein.
A significant feature of this invention is the second bore 102 which may be formed in super hard geometric segments 103 which have a super hard interior surface 104. The surface may comprise a suitable composite material including but not limited to natural diamond, synthetic diamond, polycrystalline diamond, single crystalline diamond, or cubic boron nitride. This super hard composite material may also incorporate a binder material comprising of cobalt, niobium, titanium, zirconium, nickel, iron, tungsten, tantalum, molybdenum, silicon, a refractory group metal or combinations thereof which may bind together grains of the super hard composite materials in such a way to form the segments. The interior portion of the segments may thus comprise a region depleted of the binder material. This may be advantageous when the second bore 102 is subjected to high temperatures since the binder material may have a higher thermal expansion rate than the superhard composite material. The super hard geometric segments 103, which may be annular segments, wedge like segments, various geometric shape segments or a combination thereof, may be interposed within the first bore 101 in a concentric array that extend lengthwise along the longitudinal axis 106 of the first bore 101. The super hard composite material may be chemically inert and may possess fracture toughness, thermal shock resistance, tensile strength, and low thermal expansion characteristics all of which may serve to further enhance resistance to wear when high pressures or high temperatures are exerted on the interior surface 104 of the structure. While not limited thereto, polycrystalline diamond may be the preferred composite material and may possess a plurality of grains comprised of a size of 0.1 to 300 microns. The super hard composite material may also have a thermal expansion coefficient of approximately 2 μin/in, but in some embodiments, the thermal expansion coefficient may be 0.1 to 10 μin/in. This is a significant feature as it enhances the structural integrity of the overall structure during periods of high pressure and high temperatures in such applications as a gun barrel, piston cylinder, pipe, tube, or other rigid composite structures that may exert friction on the interior surface. Despite the various forces that may act on the super hard interior surface 104, the second bore 102 is able to retain its structural integrity due in part to the inherent characteristics of the super hard geometric segments 103 disposed within the first bore 101.
The metallic material may comprises a suitable material that exhibits lower coefficients of thermal expansion at lower temperatures and higher coefficients of thermal expansion at higher temperatures such as Invar 365. Other suitable metallic materials that may be used include but are not limited to aluminum, titanium, a refractory metal, steel, stainless steel, Invar 36, Invar 42, a composite, a ceramic, carbon fiber or combinations thereof. These materials may exhibit such characteristics that allow the metallic material to be manipulated under high temperature and then shrink wrapped around the super hard geometric segments 103. This process may be used in order to hold the super hard geometric segments 103 under radial compression of 50-200 % of operating pressure and axial compression of 50-200 % of proof pressure being achieved through incorporation of a shoulder 105 at the first end 107 of the first bore 101 and biasing unit 108 at the second end 109. Although not limited to, the metallic material may be Invar 365 due to its comparative characteristics with polycrystalline diamond which allow both the metallic material and super hard geometric segments 103 to complement one another in their utility and to further enhance the structures ability to retain its structural integrity during periods of high pressures and high temperatures.
Although the thickness of the super hard composite material may be comparable to the thickness of the metallic material, it should be noted that in embodiments where the structure comprises a gun barrel, the preferred thickness for the super hard composite material is 0.040 inches to 0.25 inches, while the thickness of the metallic material is 0.25 inches to 0.75 inches. The thicknesses of the materials depends on many factors and any combinations of thickness are covered within the scope of the claims.
In a preferred method for manufacturing super hard geometric segments 103, diamond or cubic boron nitride grains are sintered in a high temperature high pressure press to form the desired shape of the segment. Usually a binder material is used to catalyze the sintering process, a preferred binder material being cobalt, which diffuses under the high pressure and temperature from adjacent material (typically tungsten carbide) also in the press. In such a method, a bond will form between the adjacent tungsten carbide and the sintered diamond.
This feature may be incorporated to further ensure that the segments 103 do not rotate within the first bore 101 as a result of exposure to high temperatures and high pressures. This feature may prove especially useful if the present invention is adapted for use in the application of a gun barrel where movement of the segments may detrimentally affect the trajectory of a bullet as it exits the barrel but may be significantly reduced if interlocking abutting ends are incorporated. The interlocking profiles may help align the rifling formed in the interior surface 104 of the second bore 102 if the rifling is formed prior to connecting the segments 103.
In some embodiments, the breech receiver 204 will be threaded into place in the breech end 203 after the metallic material is sufficiently cooled. In other embodiments, the breech receiver 204 is not threaded, but is placed within the first bore 101 such that it biases the segments against the shoulder 105 of the first end 107, thereby applying an axial compression 111. Then the temperature of the metallic material is lowered, shrinking itself around the breech receiver 204 such that the receiver is held in place after cooling and continues to apply axial compression 111 to the segments. In yet other embodiments, axial pressure 111 may be applied by a biasing unit 108 while the first bore 101 is expanded and the biasing unit 108 is then removed after the metallic material is shrunk and the friction between the metallic material and the segments is enough to provide the axial compression 111.
The embodiment also depicts at least one port 112 through the metallic material and the super hard interior surface 104 which may help to counteract recoiling effects. The ports may comprise a variety of geometries such as straight bores, tapered bores, rectangular bores, curved bores, angled bores, or combinations thereof. The ports may comprise a port axis that is normal to the axis of the composite structure or the port access may intersect the axis of the composite structure at any angle.
The intermediate layer 700 may be wrapped between the metallic material and the super hard geometric segments 103 and serve as a thermal insulator to further enhance the structural integrity of the structure by assisting to contain the detrimental effects of heat on the structure. A thermal insulator may be advantageous in embodiments, where the metallic material would thermally expand within a temperature produced during gun fire and help prevent heat from reaching the metallic material and allow the radial compression 110 on the segments to be maintained. Further, an intermediate layer 700 with a low co-efficient of thermal expansion may also be used as the intermediate material. In such an embodiment, the intermediate layer 700 may comprise a high or low thermal conduction rate, but since the intermediate layer 700 may not expand even if the metallic material does, the radial compression 110 may be maintained. Also, the thermal conductivity of a superhard segment made of diamond or cubic boron nitride is much higher than standard steels typically used for gun barrels. The friction of the bullet traveling down the barrel may be lower allowing higher velocities.
In some embodiments, the pillar may be lined with a high concentration of binder. In other embodiments a foil, such as a cobalt foil, may be wrapped around the pillar which may help in the diffusion of the binder into the diamond grains. In yet other embodiments a foil may be placed between the diamond grains and the pillar to prevent a creation of a strong bond between the two. Still in some embodiments, the pillar may be made of salt or the pillar may be lined with salt. A salt pillar with a foil of a desired binder wrapped around it may allow the formation of a strong annular segment with an easily removable pillar.
Patterns formed in the interior of other composite structures may also be formed using an EDM. It may be desirable that a piston comprise an anti-rotation protrusion and super hard segments lining the bore of the cylinder comprises a complementary slot coaxial with the piston for the protrusion to travel in.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation of U.S. patent application Ser. No. 12/846,794 filed on Jul. 29, 2010, now U.S. Pat. No. 8,020,333 and titled Cylinder with Polycrystalline Diamond Interior. U.S. patent application Ser. No. 12/846,794 was a continuation of U.S. patent application Ser. No. 11/381,709, filed on May 4, 2006, which is now abandoned. Both of these references are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
2170259 | Heinrich | Aug 1939 | A |
2850828 | Sullivan | Sep 1958 | A |
2915946 | Marden | Dec 1959 | A |
2975677 | Kelly | Mar 1961 | A |
2977666 | Brace | Apr 1961 | A |
3025765 | Baker | Mar 1962 | A |
3571962 | Eig | Mar 1971 | A |
3753694 | Badia | Aug 1973 | A |
4411672 | Ishizuka | Oct 1983 | A |
4435455 | Prewo | Mar 1984 | A |
4485721 | Shankhla | Dec 1984 | A |
4525178 | Hall | Jun 1985 | A |
4577431 | Siemers | Mar 1986 | A |
4669212 | Jackson | Jun 1987 | A |
4753154 | Higashi | Jun 1988 | A |
4841836 | Bundy | Jun 1989 | A |
4982648 | Bol | Jan 1991 | A |
5160802 | Moscrip | Nov 1992 | A |
5183958 | Petrovich | Feb 1993 | A |
5196637 | Petrovich | Mar 1993 | A |
5212328 | Petrovich | May 1993 | A |
5378499 | Martin | Jan 1995 | A |
5462772 | Lemelson | Oct 1995 | A |
5600912 | Smith | Feb 1997 | A |
5657568 | Christensen | Aug 1997 | A |
5731046 | Mistry | Mar 1998 | A |
5804756 | Christensen | Sep 1998 | A |
5856631 | Julien | Jan 1999 | A |
5915937 | Christensen | Jun 1999 | A |
6482248 | Holloway | Nov 2002 | B1 |
6576598 | Brown | Jun 2003 | B2 |
6615702 | Julien | Sep 2003 | B1 |
6789454 | Smith | Sep 2004 | B2 |
6817550 | Taylor | Nov 2004 | B2 |
7172142 | Taylor | Feb 2007 | B2 |
7197986 | Calkins | Apr 2007 | B1 |
7347259 | Ravensbergen | Mar 2008 | B2 |
20020002786 | Smith | Jan 2002 | A1 |
20030078170 | Brown | Apr 2003 | A1 |
20040052964 | Kaufmann | Mar 2004 | A1 |
20040140292 | Kelley | Jul 2004 | A1 |
20050268517 | Withers | Dec 2005 | A1 |
20060265926 | Sietsema | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20110296730 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12846794 | Jul 2010 | US |
Child | 13211154 | US | |
Parent | 11381709 | May 2006 | US |
Child | 12846794 | US |