The present invention is directed to a compressible joint formed in a rigid foam insulting panel.
Current practice of applying foam to insulate homes/businesses generates a lot of waste products such as disposal of containers, hazardous outgasing, and rework difficulties. The sprayed insulation foam ages over time and loses its insulation properties. Commercial manufacturing settings provide ideal conditions for fabricating insulation panels with very high insulation R factors ranging from 8-10 per inch. However, fitting the current insulation panels to existing homes is labor intensive and not readily practical. It is extremely desirable to use polystyrene manufactured in a commercial environment as an insulation material readily mountable in existing wall and ceiling spaces.
Current foam based insulation panels are manufactured using polystyrene and polyisocyanurate. Extrusion is a preferred manufacturing method for insulation panels due to its speed and accuracy. Other mold injection methods are also practiced for specialty applications.
In use, the foams are then cut on-site to fit specific dimensions between wall studs and/or ceiling studs. Once the foams are cut into desired dimensions it is necessary to seal the joints between the wall studs and the foam to prevent air infiltration from taking place and/or to attach the foam to the studs. This process is time consuming and labor intensive, and thus, not often performed in practice.
The present invention provides a compressible joint capable of allowing for an insulation panel to be compressed prior to insertion between wall studs. The compressible joint is preferably elastic allowing for relatively easy flexing and/or compression of the panel to allow for insertion. Once the flexible panel is inserted between the wall studs, the deformed compressible joint applies a lateral force to seal the space between the wall studs and the insulation panel. The compressible joint can be located in one or more locations in the central portion of the insulating panel, along one or more edges, or some combination thereof.
In some embodiments, to enhance the sealing performance of the edges of the foam panel, multiple air fin features are fabricated on the insulation panel to permit maximum engagement between the wall studs and the panel edges. In one embodiment, the air fins features comprise triangular extruded features where the triangular apex (peak) is pushed against the wall studs creating an airtight seal. The deflection and/or deformation of the air fins allows for airtight joints without the need to apply additional foam or other sealants to the insulation panel. The air fins also help to secure the foam in the space between the studs.
The insulation panels are fabricated with a compressible joint located preferably at one of the panel ends along the entire length of the panel. The insulation panel is slightly larger than the spacing between the studs. The force exerted by the panel against the wall studs is determined by the interference of the panel and the wall studs times the stiffness of the compressible joint.
In one embodiment, the insulating panel includes a panel structure of closed cell foam with a first portion and a second portion. At least one compressible joint connects the first portion to the second portion. The compressible joint includes at least one segment with a cross-sectional thickness less than a cross-sectional thickness of the panel structure.
The compressible joint is preferably elastically deformable in response to a compressive force is applied to side edges of the panel structure. In one embodiment, the segments of the compressible joint are oriented at an angle with respect to first and second major surfaces of the panel structure. The segments can optionally be curvilinear. The compressible joint is optionally a closed structure. The segments are preferably configured to deform symmetrically in response to a compression force is applied to side edges of the panel structure. The compressible joint in a fully compressed configuration is preferably located substantially between first and second major surfaces of the panel structure.
The compressible joint in a compressed configuration preferably generates an expansion force generally parallel to first and second major surfaces of the panel structure. At least one deformable fin is optionally located on side edges of the panel structure.
The insulating panel optionally includes a plurality of parallel compressible joints. In one embodiment, the insulating panel includes a plurality of non-parallel compressible joints. The compressible joints can also serve as score lines for cutting or snapping the insulating panel into the desired sizes.
The compressible joint permits the first portion of the panel structure to move in at least two degrees of freedom relative to the second portion of the panel structure. In another embodiment, the insulating panel includes a plurality of non-parallel compressible joints that permit the first portion of the panel structure to move in three degrees of freedom relative to the second portion of the panel structure.
The major surfaces of the insulating panel are optionally a non-rectangular shape. The panel structure and the compressible joint are preferably a monolithic structure. The first and second portions and the compressible joint are preferably a unitary structure integrally formed from the closed cell foam.
The panel structure is optionally a multi-layered structure. A flexible sheet optionally extends across the compressible joint to the first and second portions of the panel structure. In another embodiment, a flexible sheet is located in the compressible joint. In yet another embodiment, a flexible sheet is co-extruded inside at least the compressible joint.
In another embodiment, the present insulating panel includes a panel structure of closed cell foam with a plurality of side edges. At least one compressible joint extends along at least of one of the side edges. The compressible joint includes at least one segment with a cross-sectional thickness less than a cross-sectional thickness of the panel structure. In this embodiment, the compressible joint is one or more fins.
An embodiment of the present invention is also directed to a method of installing an insulating panel. The insulting panel is sized slightly larger than a space between two opposing surfaces. A compressive force is applied to a compressible joint connecting first and second portion of the panel structure so the insulating panel is slightly smaller than the space between the opposing surfaces. The insulating panel is located between the opposing surfaces. The compressive force is released. An expansion force is generated by the compressible joint that is transmitted through the first and second portions of the panel structure to the opposing surfaces.
In operation, the compression force 26 is typically provided by an operator preparing to insert the insulating panel between a pair of opposing surfaces, such as between adjacent wall studs. In another embodiment, the insulating panel 22 can be subject to a compressive force as part of an automated assembly procedure, such as illustrated in U.S. Patent Application No. 2008/0168741 (Gilgan et al.) which is hereby incorporated by reference.
The segments 24 preferably have a cross-sectional thickness 28 less than the cross-sectional thickness 30 of the insulating panel 22. This differential in thickness 28 vs. 30 facilitates deformation of the segments 24 without deforming first and second portions 22a, 22b of the insulating panel 22. In the preferred embodiment, the total thicknesses 30 of the segments 24a, 24b plus the thicknesses of the segments 24c, 24d is preferably at least 2 inches so as to obviate a vapor barrier.
In the illustrate embodiment, the segments 24 are angled with respect to each other and the first and second portions 22a, 22b of the insulating panel 22. Although the embodiment of
As is best illustrated in
The amount of displacement (gap 34 minus gap 30) of the first portion 22a relative to the second portion 22b can vary with the application, the thickness of the insulating panel 22, and a variety of other factors. In one embodiment, the maximum displacement possible is preferably about one inch for each compressible joint 20. In operation the user preferably cuts a section of insulating panel 22 less than about one inch larger than the space between the wall studs. Consequently, the section of insulating panel 22 can be compressed a sufficient amount to fit in the space.
In an embodiment where the compressible joint deforms, at least in part, elastically, the compressible joint 20 generates expansion force 40. As will be discussed below, this expansion force 40 can be used to retain the insulating panel 22 between opposing surfaces, such as for example studs in a wall structure. Due to plastic deformation, the expansion force 40 is typically less than the compression force 26.
Turning back to
In the illustrated embodiment, side edges 68, 70 of the panel 60 also include a plurality of fins 72 for forming a seal with another structure. The fins 72 are not limited to triangular shapes can be extended to include more compliant structures such as high aspect ration geometrical shapes to conform to stud-to-stud spacing.
In one embodiment, an additional sealing 86, such as caulk or foam, is applied to the perimeter of the insulating panel 60 to improve the seal with the studs 80, 82, 88. In another embodiment, a foam material is applied to the compressible joint 62 to increase the insulating properties of the panel 60 in that location.
In the embodiment of
In an embodiment where the compressible joints 100 are the sole compressible joints, the central portion 120 of the insulating panel 104 (excluding the compressible joint 100) preferably has a width 122 less than the width between studs 124 (see
As best illustrated in
In another embodiment, the insulating panel 150 includes a compressible joint 152 every 4 or 6 inches. Consequently, for most applications the cut sections of insulating panel 150 will have a plurality of compressible joints 152. This embodiment is desirable to minimize the deformation of any single compressible joint 152.
The insulating panel 150 optionally includes compressible joints 154 generally perpendicular to compressible joints 152. The compressible joints 152, 154 permit compression in two degrees of freedom.
In an embodiment where the compressible joints 152 are formed during extrusion of the insulating panel 150, the compressible joints 154 are typically formed using a machining or cutting process, such as for example with a heated cutting tool. Edges 156, 158, 160, 162 preferably include fins or an additional compressible joint (see e.g.,
In another embodiment, compressible joints 164 are optionally formed at an angle with respect to major axis 166 of the insulating panel 150. Angled compressive joints 164 are particularly useful for non-rectangular sections of the insulating panel 150, such as illustrated in
The present invention is applicable to any type of insulating material, but preferably with a rigid, closed cell foam material that can be extruded, such as disclosed in U.S. Pat. Nos. 4,623,673 (DeGuiseppi et al.); 5,008,299 (Tucker et al.); 5,523,334 (White et al.); and 5,547,998 White et al.), which are hereby incorporated by reference. The insulating foam can be monolithic or a multilayered structure, such as disclosed in U.S. Pat. No. 4,764,420 (Gluck et al.) or 4,938,819 Ishii et al.), which are hereby incorporated by reference. In some embodiments, a foil, woven or non-woven layer, or other material can be laminated or applied to one or both surfaces of the insulating panel, such as disclosed in U.S. Pat. No. 4,121,958 (Koonts), which is hereby incorporated by reference. In another embodiment, a flexible sheeting is co-extruded with the insulating panel.
The embodiment of
The compressible joints and/or fins of the present invention are preferably integrally formed in the insulating panel during manufacturing. In particular, the compressible joint and/or fins are made from the same material and are part of the insulating panel. In the preferred embodiment, the die used to extrude the insulating panel includes features that form the compressible joint and/or fins during manufacture of the insulating panels. In an alternate embodiment, the compressible joints and/or fins can be cut after the insulating panel is extruded using a variety of techniques, such as with a heated cutting tool.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the inventions. The upper and lower limits of these smaller ranges which may independently be included in the smaller ranges is also encompassed within the inventions, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the inventions.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which these inventions belong. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present inventions, the preferred methods and materials are now described. All patents and publications mentioned herein, including those cited in the Background of the application, are hereby incorporated by reference to disclose and described the methods and/or materials in connection with which the publications are cited.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present inventions are not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Other embodiments of the invention are possible. Although the description above contains many specificities, these should not be construed as limiting the scope of the invention, but as merely providing illustrations of some of the presently preferred embodiments of this invention. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.
Thus the scope of this invention should be determined by the appended claims and their legal equivalents. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims.