The present invention relates to the field of construction engineering, and in particular, to a hanger structure that is easy to maintain and replace.
A hanger structure is widely applied to the field of construction engineering, such as bridges. A common rigid hanger usually uses a pre-stressed concrete structure. A pure pre-stressed concrete structure is prone to be cracked, and a sectional dimension is relatively large. Therefore, rigid hangers widely applied currently are steel tube concrete pre-stressed hangers. A steel tube concrete hanger has advantages of a transverse collision resistant capability and the like, can reduce wind vibration, and can decrease a building height of a bridge and live load amplitude.
Currently, there is usually a rigid connection between an existing hanger structure and an arch rib and a beam. When the hanger is deformed and inclined due to impact of temperature or other factors, concrete inside the hanger is easily cracked, leading to a potential safety hazard.
In addition, two ends of the hanger structure are usually anchored in invisible positions, such as above the arch rib and under the beam. During maintenance of an anchor end, a track maintenance car is required. However, partial space under the beam is relatively narrow, and a track car is difficult to pass through, so that the anchor end becomes a blind zone of maintenance, thereby greatly affecting safety of a bridge.
To overcome disadvantages of the existing technology, the present invention provides a rigid hanger connecting structure.
The present invention further provides a bridge structure.
To resolve existing technical problems, the present invention provides the following technical solutions:
A rigid hanger connecting structure, including a rigid hanger and further including a first connecting portion connected to a top end of the rigid hanger and a second connecting portion connected to a bottom end of the rigid hanger, where the rigid hanger is rotatably connected to the first connecting portion and the second connecting portion, and is connected to at least one of the first connecting portion and the second connecting portion by using a spherical bearing pair.
As a further improved manner of the above solution, the first connecting portion includes a hinge assembly rotating along one direction or a spherical hinge assembly rotating along multiple directions, and the second connecting portion includes the spherical hinge assembly rotating along multiple directions.
As a further improved manner of the above solution, the spherical hinge assembly includes a spherical hinge cushion block and an anchoring beam, the anchoring beam is provided with a through hole, one end of the through hole includes a taper hole, the other end of the through hole includes a groove, the spherical hinge cushion block is provided with an arc-shaped protrusion matching a curvature diameter of the groove, an end part of the hanger is inserted from the taper hole and is connected to the spherical hinge cushion block after passing through the through hole, and the protrusion is embedded into the groove to form the spherical bearing pair.
As a further improved manner of the above solution, the rigid hanger connecting structure includes an anchoring nut, where an end part of the hanger is provided with a screw anchor cup, the screw anchor cup passes through the spherical hinge cushion block, and the anchoring nut is in threaded connection with the screw anchor cup.
As a further improved manner of the above solution, the rigid hanger connecting structure includes a pressure sensor, where the pressure sensor is disposed between the anchoring nut and the spherical hinge cushion block.
As a further improved manner of the above solution, the hanger includes a steel tube, a pre-stressed steel strand, and a steel strand fastener, the pre-stressed steel strand penetrates inside the steel tube, two ends of the pre-stressed steel strand are connected to the steel tube by using the steel strand fastener, and concrete is filled between the steel strand and a tube wall of the steel tube.
As a further improved manner of the above solution, a screw anchor cup is sleeved outside an end part of the steel tube, and an annular seal ring is disposed between the screw anchor cup and the tube wall of the steel tube.
As a further improved manner of the above solution, the first connecting portion and the second connecting portion each include a connecting assembly, and the connecting assembly includes a pre-embedded anchoring element, or the connecting assembly includes a steel ring.
As a further improved manner of the above solution, the connecting assembly of the first connecting portion includes the pre-embedded anchoring element, the connecting assembly of the second connecting portion includes a hoop steel plate and the steel ring, and the steel ring is disposed at two ends of the hoop steel plate, and is coaxial with the hoop steel plate.
A bridge structure, including an arch rib and a beam, and further including the rigid hanger connecting structure, a bottom end thereof is pre-embedded inside the beam by using a pre-embedded anchoring element, a top end thereof is sleeved on the arch rib by using the steel ring and the hoop steel plate, so that an anchoring end of the hanger is within a visual range, and the steel ring and the arch rib are fixed as a whole by using several rivets.
The beneficial effects of the present invention are:
1. By using a hinge assembly and a spherical hinge assembly, a rotatable connection between a hanger and a bridge structure is implemented, so as to avoid phenomenon of concrete cracking inside a short hanger caused due to incline of the hanger, and help prolong the service life of a bridge.
2. Connecting ends of the hanger are located in a lower part of an arch rib and an upper part of a bridge floor, respectively, and are located within a line of sight range, and therefore, it is convenient for maintenance, a blind zone of maintenance can be eliminated, and a problem that a cable is corroded in a beam due to that water inflows to an anchor head (or a seal box) used for anchoring the cable, thereby greatly improving safety of the bridge.
3. The hanger and connecting assemblies thereof can be prefabricated in a factory. This can ensure construction quality, and can reduce time of site construction, help to shorten a construction period, and improve efficiency.
The following describes the present invention in detail with reference to the accompanying drawings and specific embodiments.
The following describes a concept, a specific structure, and technical effects of the present invention clearly and completely with reference to embodiments and accompanying drawings, to fully understand an objective, solutions, and effects of the embodiments of the present invention. It should be noted that features in the embodiments and the embodiments in the application may be combined with each other in a non-conflicting situation.
It should be noted that, unless otherwise specified, when it is described that a feature is “fixed” and “connected” to another feature, the feature is directly “fixed” and “connected” to the another feature, or the feature is indirectly “fixed” and “connected” to the another feature. In addition, descriptions about top, bottom, left, right, and the like used in the present invention are provided only relative to a mutual position relationship of constituent parts of the present invention.
In addition, unless otherwise specified, meanings of all technical and scientific terms used in this specification are the same as that usually understood by persons skilled in the art. Terms used in this specification are only used to describe specific embodiments, but are not intended to limit the present invention. A term “and/or” used in this specification includes any combination of one or more related items listed.
Referring to
Specifically, referring to
Two ends of the steel strand 120 are connected to the steel tube 110 by using the steel strand fastener 130. In this embodiment, the steel strand fastener 130 is a pre-stressed anchor plate, and the pre-stressed anchor plate is fastened to an end part of the steel strand 120, and abuts with an end face of the steel tube 110, so as to prestress the steel strand 120. In addition, a screw anchor cup 150 is sleeved outside an end part of the steel tube 110, and the screw anchor cup 150 is configured to implement a connection between an anchoring nut and the steel tube 110. Further, an annular seal ring 160 is disposed between the screw anchor cup 150 and the tube wall of the steel tube 110. The seal ring can prevent corrosion occurring at joint parts among the steel tube 110, the pre-stressed anchor plate, and the steel strand because of water permeation.
In another embodiment of the hanger, the steel strand fastener 130 may alternatively use a threaded anchor head (as shown in
Referring to
The steel ring 230 and the hoop steel plate 240 form the connecting assembly of the first connecting portion and are configured to implement a connection between the first connecting portion and a bridge, where the hoop steel plate 240 is preferably a U-shaped steel plate, and an opening of the hoop steel plate 240 faces downwards. The steel ring 230 may be used as a detachable structure to clamp the hoop steel plate 240 in the middle, or may be fastened to the hoop steel plate 240 to form an integrated structure. For facilitating actual installation, the former solution is used in this embodiment.
Referring to
In this embodiment, the anchoring nut 330 is preferably used to connect the hanger and the spherical hinge cushion block. Specifically, the spherical hinge cushion block 310 is also provided with a through hole, the end part of the hanger 110 extends out from the through hole, and the anchoring nut 330 is directly connected to an extending end of the hanger, or is connected to a screw anchor cup sleeved out of the extending end of the hanger, so as to clamp the spherical hinge cushion block between the hanger and the anchoring beam 320. In a replacement process of the hanger, the anchoring nut 330 gradually releases tension of the hanger with no need of a complex construction process such as disposing an auxiliary hanger. This facilitates shortening of a construction period and has a better economic effect. In addition, to adapt tensioning of the hanger, the anchoring nut 330 may alternatively be screwed in or out to adjust a spacing between the first connecting portion 200 and the second connecting portion 300.
Certainly, the hanger may alternatively be connected to the spherical hinge cushion block by using another well-known technology.
The second connecting portion further includes a pressure sensor 360, and the pressure sensor 360 is disposed between the anchoring nut 330 and the spherical hinge cushion block 310, and is configured to detect pressure of the hanger.
The anchor support 340 and the pre-embedded anchoring element 350 form a connecting assembly of the second connecting portion, where the anchor support 340 is configured to connect the pre-embedded anchoring element 350 to the anchoring beam 320, and the pre-embedded anchoring element 350 is configured to connect the second connecting portion to the bridge.
The connecting assemblies in the present invention are not limited to the foregoing two connecting assemblies. Different assemblies may be selected as required as the first connecting portion and the second connecting portion use the pre-embedded anchoring element for connection, or are connected to the hoop steel plate by using the steel ring.
In the foregoing embodiment in the present invention, the first connecting portion can rotate only along one direction. However, for a stay cable or special-shaped arch bridge, when an inclined cable plane appears outside a plane, deformation of the hanger may be bi-directional. On this basis, the present invention further discloses a second embodiment of the first connecting portion. Referring to
Referring to
In the present invention, by using the hinge assembly and the spherical hinge assembly, a rotatable connection between the hanger and a bridge structure is implemented, so as to avoid phenomenon of local concrete cracking inside a short hanger caused due to incline of the hanger, and help to prolong the service life of the bridge; the connecting ends of the hanger are located in a lower part of the arch rib and an upper part of a bridge floor, respectively, and are located within a line of sight range, and therefore, it is convenient for maintenance, a blind zone of maintenance can be eliminated, thereby greatly improving safety of the bridge; and the hanger can be prefabricated in a factory, and therefore, construction quality can be ensured, and time of site construction can be reduced, so as to help to shorten a construction period and improve efficiency.
The foregoing provides detailed descriptions of preferred embodiments of the present invention, but the present invention is not limited to the embodiments. Persons skilled in the art can still make various equivalent variations or replacements without departing from the spirit of the present invention. All these equivalent variations or replacements fall within the scope defined by the claims in this application.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0984743 | Nov 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/074684 | 2/24/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/086272 | 5/17/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1293383 | Eaton | Feb 1919 | A |
20020104175 | Zivanovic | Aug 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20190063014 A1 | Feb 2019 | US |