Embodiments generally relate to liquid crystal display assemblies.
Liquid crystal displays (LCDs) are now being used in many environments which are not protected from direct sunlight, shock, or high/low ambient temperatures. Specifically, it is now desirable to place LCDs on a moving vehicle, typically for advertising or informational purposes. While they can be placed anywhere on the vehicle, it is sometimes preferred to place the LCDs atop the vehicle, attached to the roof. Of course, traditional LCDs are not capable of withstanding the impacts of sunlight, weather, high/low ambient temperatures, as well as the shock that would be transferred to the LCD when the vehicle hits potholes, curbs, speed bumps, and sometimes other vehicles.
The various layers used to construct an LCD are typically very thin, as the thinner LCD assemblies have been more popular in the marketplace and are typically more appealing to the consumer. However, thin components have been difficult to form into a resulting assembly that is durable enough to withstand this particular application and all of the competing environmental factors, while still producing a very bright, high quality image that does not degrade over time.
Exemplary embodiments disclosed herein provide a rigid LCD assembly including a LCD having a perimeter, a first layer of tape around the perimeter of the LCD, and a diffusing plate attached to the later of tape so as to create a cavity defined by the space between the LCD, tape, and diffusing plate. One or more optical films may be inserted into the cavity, and while constricted in directions perpendicular to the films, the films may be free to move slightly in the directions parallel to the films. A U-shaped backlight wall may attach to the diffusing plate and would contain a backlight. An optional thermal plate can be attached to the backlight wall, which can be used with a second thermal plate to define a channel for accepting cooling air.
The foregoing and other features and advantages of the exemplary embodiments of the present invention will be apparent from the following more detailed description of the particular embodiments, as illustrated in the accompanying drawings.
A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:
The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Fans 375 may be positioned within the housing 400 to force the external air through the inlet 200 and outlet 210. Fans 375 could be positioned anywhere within the housing 400, but are preferably near either the inlet 200 or outlet 210. Fans 375 may be placed near both the inlet 200 and outlet 210 or only near one of the two. Section line 2-2 is shown cutting vertically through the assembly 401.
The second path (closed loop) is used to force circulating air through a first heat exchanger 392, second heat exchanger 391, between the protective plate 300 and a first LCD, and between a second protective plate and a second LCD. The circulating gas is preferably forced through the closed loop path by fan 380, which could be placed anywhere in the path of the closed loop, but here is shown above the first and second heat exchangers 392 and 391. The second path (closed loop) can be thought of as a single figure-8 type flow or a combination of loops. The first loop can be described as beginning at the fan 380, travelling through the heat exchanger 392, continuing between the rigid LCD assembly 199 and the transparent protective plate 300, and finally returning to the fan 380. The second loop would also begin at the fan 380, but would instead travel through the heat exchanger 391, continuing between the opposing LCD assembly and the opposing transparent protective plate, and finally returning to the fan 380.
Preferably, the circulating air traveling through the closed loop is not permitted to mix with the external air travelling through the open loop. This prevents dust, water vapor, pollen, and other contaminates from entering sensitive portions of the display, specifically the gap 505 between the two heat exchangers as well as the gap between the rigid LCD assembly 199 and the transparent protective plate 300. The gap 505 is preferably used to house the electronics for powering and driving the rigid LCD assemblies.
A series of channels 198 are preferably defined by the combination of the front thermal plate 170, rear thermal plate 190, and corrugated layer 180. The channels 198 guide the open loop air and allow heat to be removed from the backlight 160 by transferring to the heat to the front thermal plate 170, rear thermal plate 190, and corrugated layer 180. In some embodiments, the corrugate layer 180 may not be used, but the open loop air is simply forced between the front thermal plate 170 and rear thermal plate 190.
While not required, it is preferable that the diffuser plate 130 is a glass plate, which helps to provide rigidity to the assembly. In an exemplary embodiment, the diffuser plate 130 is a glass plate with a coating or treatment on the front surface which causes the diffusion of the light. In some embodiments the front surface of the glass may have a thin white flashed layer. In a preferred embodiment, the diffuser plate 130 would comprise Opalika® filterglass from Schott North America. The data sheet for Opalika® filterglass can be found at www.us.schott.com/architecture and is herein incorporated by reference in its entirety. It should be noted that while a plate is preferred for the diffuser 130, a traditional diffuser film or plastic plate could also be used in some embodiments.
Another layer of adhesive 140 is preferably used to bond the diffuser plate 130 to the backlight cavity walls 150, which in an exemplary embodiment have a U-shaped cross-section and would be formed sheet metal. The backlight cavity walls 150 are preferably attached to the front thermal plate 170, which is preferably in contact with the backlight 160. The backlight 160 is preferably a metal printed circuit board having a plurality of LEDs. The rear thermal plate 190 may be attached to the front thermal plate 170 so as to interpose the corrugated layer 180 in between. The layer of adhesive 140 is preferably placed around the perimeter of the diffuser 130.
In a preferred embodiment, the backlight cavity walls 150 would have a U-shaped cross-section defined by a top ledge 341 with a top surface, bottom ledge 343 with a bottom surface, and a sidewall 342 connecting the top ledge 341 with the bottom ledge 343. In a preferable arrangement, the top ledge 341 and bottom ledge 343 would be substantially parallel and the sidewall 342 would be substantially perpendicular to the top ledge 341 and bottom ledge 343. Preferably, the top surface of the top ledge 341 would attach to the adhesive 140 while the bottom surface of the bottom ledge 343 would attach to the front thermal plate 170.
The adhesive layers 140 and 110 could be any number of adhesives, but are preferably very high bond (VHB) tape. In this way, the thickness of the VHB tape could be selected to be similar to the thickness of the optical films 120. Although not required, the adhesive layers 140 and 110 would preferably run all around the perimeter of the assembly 199 so as to completely seal each of the layers and prevent dust and contaminates to enter the assembly and disrupt any resulting images or damage the components.
Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
This application is a continuation of U.S. application Ser. No. 15/140,140, filed Apr. 27, 2016, which is a continuation of U.S. application Ser. No. 14/192,130, filed on Feb. 27, 2014, which claims priority to U.S. Provisional Application No. 61/785,285, filed on Mar. 14, 2013, all of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61785285 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15140140 | Apr 2016 | US |
Child | 16187033 | US | |
Parent | 14192130 | Feb 2014 | US |
Child | 15140140 | US |