This application claims the benefit of U.S. Provisional Application No. 62/426,526, filed Nov. 26, 2016, entitled RIGID METAL RESERVOIR HYDRATION SYSTEM which is incorporated by reference herein in its entirety.
Individuals performing outdoor and sporting activities need to hydrate during their activities. Whether hiking, cycling, running, kayaking, fishing, hunting, or any number of other similar activities, it is preferable to hydrate on-the-go, with minimal interruption to the activity. Otherwise, people may not hydrate adequately, as taking frequent breaks to hydrate may not be desirable or even feasible while performing these activities.
In order to maintain proper hydration levels, people may be required to regularly ingest fluids. There have been several portable devices developed to meet this need. A traditional approach involves the storage and dispensing of drinkable liquids in the form of water bottles or canteens, which are most often in the form of a plastic or metal cylindrical container, which can be carried by the user or stored during an activity inside a hip-mounted holster, a bottle cage mounted on a bicycle, or a number of other storage methods. Water bottles require the use of at least one hand, and can interrupt the user while performing a given activity. The constant interruption of activities and/or the need to use one's hand or hands to hydrate with these bottles and canteens is a well-known nuisance, for which outdoors and sports enthusiasts have sought better solutions through the years.
Alternative approaches involves the use of a backpack-mounted fluid dispensing system. Such systems incorporate a flexible, bag-like (e.g. soft-sided) reservoir or bladder which is mounted on a user's back in a backpack and which contains a drinkable liquid. The liquid is dispensed from the reservoir through a flexible tube which is routed to a user's mouth. Typically the liquid may be dispensed at the will of the user by means of the operation of a “bite valve”, which the user typically operated by means of a pinching or biting action on the valve. This method of hydration during an activity offers the advantage of hands-free and interruption-free operation which is typically preferable during outdoor and sporting activities.
There are significant benefits to using backpack-mounted hydration systems over water bottles and canteens. According to a scholarly article entitled, “Hydration Packs Modify Professional Skiers Hydration Levels in All Day Skiing: A Randomized Controlled Trial” (STP1525), published by researchers from The University of Canberra and published by the American Society for Testing and Materials, “The effect of a backpack hydration system on hydration levels of professional snowsport employees was explored by an interdisciplinary research team. On two consecutive days, a total of 33 subjects were involved in a study where on one day they would wear a backpack hydration pack, while on the other day they would hydrate as per their normal work practice. When the two days were compared, wearing a hydration pack resulted in significantly higher levels of hydration, 0.4% (95% CI 0.017-0.765, range of −1.40-3.00%) significant at a 0.05 two-tailed level, at the end of the day. It is not clear as to whether this level of hydration change is important in terms of impacting on the skills required for safe snowsports participation. However, if the effects are continuous, any negative hydration change may be associated with some level of performance loss. This research raises important questions related to access to water by all users of snowsport resorts. If hydration levels may be impacted upon by the use of hydration packs, there may be other aspects of the design “equation” that may facilitate optimal hydration levels for snowsport participants.”
Another study that demonstrates the clear benefits of back-mounted hydration systems over water bottles and canteens was conducted by researchers of the American College of Sports Medicine, entitled, “The Influence of a Back Mounted Hydration System on Fluid Homeostasis during Hiking” and published in Medicine & Science in Sports & Exercise: May 2004—Volume 36—Issue 5—p S181, concludes, “Subjects maintained hydration status at baseline levels during four hours of hiking when using a back mounted hydration system. Even with sufficient fluid quantities available and ad libitum access, subjects became significantly dehydrated during the water bottle trial. Although subjects started the hike with equal volumes of water, better accessibility led to greater ingestion and enhanced performance during the back mounted hydration system trial.”
Existing fluid dispensing systems typically incorporate a collapsible plastic or polymer reservoir which is mounted in a backpack. Water is delivered from the reservoir to a user's mouth via a flexible plastic tube, and a useractuated valve (typically called a bite valve). Problems with current systems include a plastic taste in the water; health concerns regarding the leaching of chemicals from the plastic reservoirs and other plastic components into the drinking water; difficulty and ineffectiveness with cleaning and drying flexible reservoirs; health concerns regarding mold, mildew, and/or bacteria growth within these flexible reservoirs, often occurring due to ineffective or improper cleaning; the potential for the flexible plastic reservoirs to burst, rip, or tear when a user falls on them or when impact is made with the reservoir during a sporting activity, potentially causing water damage to other items held in a backpack by the user, such as electronics, food, etc.; the dissatisfaction of water becoming warm over the course of an activity in which the hydration system is in use or stored in a hot environment such as an automobile during transport to an activity's location; the condensation formed on the reservoir's surface (also known as “sweating”) when cold water and ice are stored in the reservoir on a warm or hot day, causing the user and the contents of the backpack to become wet, potentially causing damage to electronics or food; and the tendency for flexible plastic reservoirs to shape shift within the user's backpack, causing issues with weight load and other objects shifting around within the backpack. As a result many people have resorted to using traditional water bottles made of stainless steel which do not cause some of the abovementioned concerns. However, as mentioned above, traditional water bottles and canteens are not as convenient and do not offer a hands-free solution. More detailed descriptions of the above-mentioned problems are given in the following paragraphs.
Plastic Taste:
A simple internet key word search (e.g. “plastic taste in hydration pack”) will reveal an obvious problem regarding the taste of the water in plastic reservoir hydration systems. A peer-reviewed publication performed by University of Texas researchers entitled “Estrogenic Chemicals Often Leach From BPA-Free Plastic Products That Are Replacements for BPA-Containing Polycarbonate Products” (PubMed PMID: 24886603) demonstrates that all of the common plastics and even the latest Tritan™ plastic materials used to make plastic hydration reservoirs leach chemicals exhibiting estrogenic activity (EA) into drinking water, which may have endocrine-didrupting health effects. The presence of these types of chemicals is known to present a noticeable distinctive taste referred to by many as a “chemical” or “plastc” taste. A article published by Wilderness & Environmental Medicine, September 2008: Vol. 19, Issue 3, pg(s) 172-180 doi: 10.1580/07-WEME-OR-114.1, entitled, “Effects of an Electrolyte Additive on Hydration and Drinking Behavior During Wildfire Suppression” found in their study that “Oftentimes CamelBak packs incur a “plastic” taste to water.”
Furthermore, in a Virginia Tech published thesis for Master of Science in Environmental Engineering by Timothy Heim entitled, “Impact of Polymeric Plumbing Materials on Drinking Water Quality and Aesthetics” (https://theses.lib.vt.edu/theses/available/etd-05062006-111337/unrestricted/MSThesisTimHeim.pdf), shows a direct link between the leaching of plastic chemicals into drinking water and the unpleasant taste many describe as a “plastic taste.”
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention eliminates the taste of any plastic or chemical from the dispensed drinking water. In a controlled study, the rigid metal reservoir hydration system was filled with drinking water alongside as were five of the leading branded hydration systems on the market. Each was filled at the same time with water from the exact same source, and 100 users were asked to sample water from each system. While each hydration system from current leading brands received feedback indicating a plastic taste was present from at least 90 of 100 users, the rigid metal reservoir hydration system did not receive any feedback reporting a plastic taste or any unpleasant taste whatsoever.
Health Concerns Regarding Chemical Leaching:
Another growing and perhaps more serious concern regarding the use of plastic reservoir hydration systems is that of chemicals leaching into the water and the long-term health effects of ingesting these chemicals. Many people who have switched from plastic reservoir hydration systems to stainless steel water bottles have done so not only because of the chemical taste they detected in the water, but also because of the belief that if the taste of chemicals is present in the water, then chemicals must be present in the water. Multiple studies have shown that plastic water reservoirs do release small amounts of chemical compounds into the drinking water which are now known endocrine disruptors, which have some serious potential side effects.
BPA, or bisphenol-A, is a common chemical which was traditional used in plastic water bottles and flexible plastic reservoirs. BPA has been acknowledged as an endocrine disruptor by the US Food and Drug Administration, the World Health Organization and many other researchers for many years. The Endocrine Society said in 2015 that the results of ongoing laboratory research gave grounds for concern about the potential hazards of endocrine-disrupting chemicals—including BPA—in the environment, and that on the basis of the precautionary principle these substances should continue to be assessed and tightly regulated. A 2016 review of the literature said that the potential harms caused by BPA were a topic of scientific debate and that further investigation was a priority because of the association between BPA exposure and adverse human health effects including reproductive and developmental effects and metabolic disease. Many plastic hydration reservoir manufacturers have ceased the use of BPA in their products and now tout the phrase “BPA Free” on most hydration system packaging.
BPS, or bisphenol-S, is now the common replacement additive in most plastic hydration system reservoirs. Unfortunately, new studies have shown that BPS may be as hazardous or even more hazardous than BPA to human health regarding endocrine disruption and other potential side effects. The most notable recent study on BPS with these conclusions was done by University of Texas scientists and is the first to link low concentrations of bisphenol S (BPS)—a bisphenol A (BPA) alternative—to disruption of estrogen, spurring concern that it might harm human health.
Researchers exposed rat cells to levels of BPS that are within the range people are exposed to. And, just like BPA, the compound interfered with how cells respond to natural estrogen, which is vital for reproduction and other functions. Previous studies already have shown BPS mimics estrogen, but the new study advances that by showing it can alter the hormone at low doses people are exposed to. “People automatically think low doses do less than high doses,” said Cheryl Watson, a University of Texas biochemistry professor and lead author of the study published in Environmental Health Perspectives. “But both natural hormones and unnatural ones like [BPS] can have effects at surprisingly low doses.”
Even newer plastic hydration reservoirs which claim to be free of BPA and BPS still may have chemicals which are known to have negative side effects on humans Phthalates, or phthalate esters, are esters of phthalic acid and are mainly used as plasticizers, which are substances added to plastics to increase their flexibility, transparency, durability, and longevity. One common phthalate found in plastic hydration reservoirs is di(2-ethylhexyl)phthalate or DEHP. DEHP and other phthalates are known as potential causes of endocrine disruption, cancer, and prenatal birth defects.
Some of the latest plastic flexible reservoirs used by the CamelBak™ hydration system brand and some others tout that their reservoirs are free of BPA and BPS, by using a substitute chemical compound called Tritan™, which is claimed to be safe and free of endocrine disruptors. However, a peer reviewed scholarly article published in Food Chemistry, Volume 141, Issue 1, 1 Nov. 2013, Pages 373-380, titled “Migration of plasticisers from Tritan™ and polycarbonate bottles and toxicological evaluation”, claims, in summary, that Bisphenol A, dimethyl isophthalate, and others compounds were detected Tritan™, which in higher concentrations had estrogenic (endocrine disruption) effects.
Some have argued that Tritan™ has a wide range of adverse effects such as severe dizziness, drowsiness, excitability, headaches, anxiety, vomiting, nervousness, sleep disorders, urinary dysfunction, heart palpitations, hallucinations, seizures, tremors, an macular disorders.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention eliminates the use of plastic polymeric compounds and plasticizers which may exhibit estrogenic activity (EA) leaching into the system's drinking water. When tested in identical conditions to and compared with the leading plastic reservoir for back-mounted hydration systems, which is made of Tritan™ polymer, as well as other leading brands' plastic reservoirs, the rigid metal reservoir hydration system of the present invention leached zero plasticizers or polymeric compounds into the drinking water held within. Compounds identified in Tritan™ were 2-phenoxyethanol (2-PE), 4-nonylphenol (4-NP), bisphenol A (BPA), benzylbuthyl phthalate (BBP) and dimethyl isophthalate (DMIP) at levels from 0.027±0.002 to 0.961±0.092 μg/kg, although in the 3rd migration period, BBP and DMIP were the only compounds detected well below the specific migration limit. On the other hand, BPA was the only compound detected in polycarbonate (PC) polymers at a mean concentration of 0.748 μg/kg. In vitro bioassays for (anti)estrogenic, (anti)androgenic as well as retinoic acid- and vitamin D-like activity were negative for Tritan™ and PC migrates. BPA and DMIP were estrogenic in high concentrations. Exposure of the estrogen-sensitive molluskan sentinel Potamopyrgus antipodarum confirmed the estrogenic activity of BPA in vivo at 30 μg/L.
Cleaning is a Pain:
Although improvements have been made to flexible plastic reservoir hydration systems, the reservoirs of these systems are often expensive and difficult to clean due to their construction. Flexible or “soft-sided” reservoirs (e.g. bladders, bags, etc.) are typically constructed from two sheets of high grade plastic which are bonded or welded together along their edges to create a bag with water-tight seams. Components are then attached to these reservoirs or bags for filling and dispensing fluids, such as an input port with a large threaded neck and cap to fill the bag which ice, water, or other liquids, and an output spout with a bonded or welded drinking tube. These reservoirs or bags usually have many internal corners, crevices, and seams which are difficult to clean with conventional methods. For example, these collapsible bags typically include small voids or traps which are difficult to clean and often require accessories for facilitating proper cleaning (e.g. a hanging rack, special brushes, etc.) to permit cleaning fluid access and/or air circulation. In many cases, the difficulties associated with cleaning collapsible plastic reservoirs tend to outweigh the usefulness of the hydration bag as a desirable system for providing hydration to a user.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention reduces the amount of cleaning required. On average, testing showed that the number of times required to clean a plastic reservoir in order to properly maintain it, including required drying time to avoid mold and mildew growth, was once per one use. The rigid metal reservoir hydration system, because of the materials used in the system, does not promote mold or mildew growth or accumulation, allowing the recommended number of cleanings to be reduced to once per ten uses while still maintaining a sanitary hydration system.
Health Concerns Regarding Bacteria, Mold, and/or Mildew:
It is common knowledge in the healthcare and medical community that mold and mildew are known to cause respiratory problems, common allergic reaction symptoms, nervous-system disorders and depression. Bacteria, which can accumulate in crevices within plastic reservoirs when not properly cleaned and dried, can also cause health issues for users.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention provides a mold and mildew resistant solution. In a controlled study, three of the leading plastic hydration systems and the rigid metal reservoir hydration system of the present invention were filled with water and subsequently drained through the drinking tubes to mimic normal use. No effort was made to dry or clean the reservoirs or drinking tubes, and the lids were left closed. Hydration systems were placed in the back of an SUV and left there undisturbed for three weeks. The hydrations systems were then all opened and inspected for mold and mildew. All three of the plastic hydration systems had significant amounts of mold and mildew inside their reservoirs and drinking tubes, while the rigid metal reservoir hydration system of the present invention had zero mold and mildew inside.
Potential for the Flexible Plastic Reservoirs to Burst, Rip, or Tear:
Off-road cyclists, runners, hikers, and other users of hydration systems may sometimes fall back on their hydration packs causing plastic reservoirs to burst, which can damage or ruin other contents carried within the backpack such as electronics or clothing which needs to remain dry to maintain thermal qualities in cold environments. Sharp edged or pointed objects within the backpack may also puncture plastic hydration reservoirs, causing the same damage described above to other contents in the backpack. In addition to contents becoming wet from the bursting or puncture of plastic hydration reservoirs, the user may become wet, potentially causing discomfort, inconvenience, or worse in particularly cold environments.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention provides a more puncture-resistant solution than current plastic reservoir hydration systems. To demonstrate how the present invention improves upon the current plastic hydration systems against puncture from sharp objects which may be stored inside hiking packs, an open folding camping knife was dropped, from a height of two feet above the rigid metal reservoir of the present invention, filled with water, so that the point of the knife blade landed on the reservoir. After over 100 drops, the metal reservoir was never punctured. When performing this test on three of the leading plastic reservoirs, a puncture occurred an average of 90 times for each 100 drops.
Furthermore, the present invention design also provides a burst resistance solution from falls onto the reservoir during activity. In a controlled test, three of the leading plastic reservoir hydration systems and the rigid metal reservoir hydration system of the present invention were filled with water and mounted inside identical backpacks which were each strapped to a 170-lb. dummy, which was dropped from four feet to a hard, rocky surface, oriented so that the backpack was sandwiched between the dummy and the ground in order to simulate a cyclist falling back onto his hydration pack. Out of 100 drops, the plastic hydration systems averaged 45 bursts. The rigid metal reservoir hydration system experienced zero bursts or leaks.
Warm Water:
Most users of hydration systems tend to prefer cool or cold water over substantially warm water during strenuous outdoor or sporting activities. Typical plastic hydration reservoirs do not have insulating qualities. Therefore, when hydration packs are stored in vehicles during a drive to a recreational destination or while the hydration pack is worn outside in warm or hot weather, the water or other liquid inside becomes warm, which may also contribute to accelerated plastic chemical leaching concerns as mentioned above.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention provides significant improvements in thermal insulative quality to keep water and other drinks cold. A controlled test was conducted in which three of the leading plastic reservoir hydration systems and the rigid metal reservoir hydration system were filled with iced water, the temperature of which was 32 degrees Fahrenheit, and timed for how long it took for the water in each reservoir to reach room temperature, which was 73 degrees Fahrenheit. To ensure quality control, the same amount of water, by volume, and the same amount of ice, by weight, were added to each reservoir. The time it took the best performing plastic reservoir hydration system's water to reach room temperature was two hours and thirty-seven minutes. The time it took the rigid metal reservoir hydration system of the present invention's water to reach room temperature was 47 hours and fifteen minutes.
Condensation or “Sweating”:
To address the potential for warm water during an outdoor or sporting activity, some users have added copious amounts of ice to the water inside the plastic reservoirs, which tends to keep water cooler longer, however, when iced water is stored within a plastic reservoir, the reservoir tends to “sweat” in such a manner that moisture condenses on the outer surface of the reservoir, getting other contents of the user's backpack and/or the user wet, which can damage electronics and cause other problems related to wet gear as described above.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention eliminates condensate sweating. In a controlled test, three of the leading plastic reservoir hydration systems and the rigid metal reservoir hydration system were filled with iced water, the temperature of which was 32 degrees Fahrenheit. The reservoirs were then placed outside where the ambient temperature was 87 degrees Fahrenheit. The best performing plastic hydration system generated eight fluid ounces of water condensate on its outer surface. The rigid metal reservoir hydration system generated zero condensation on its outer surface.
Shifting Weight and Volume:
Collapsible plastic reservoirs typically take a somewhat cylindrical form or conform to the shape of the container or pack when filled with a liquid. As the liquid is emptied from the reservoir, the reservoir tends to shift or deform, resulting in shifting of the weight on the user and/or distorting the shape of the pack and/or items shifting around inside the pack due to volumetric displacement of the flexible plastic reservoirs. The collapsible plastic reservoirs also tend to be cumbersome to fill with a fluid due to their lack of rigidity. In some cases, a user may freeze the filled reservoir to form a “cold pack” or the like, and the reservoir may take any of a variety of undesirable shapes when frozen, depending on the configuration of the reservoir during the freezing process.
How the Present Invention Improves Upon Current Solutions to Solve this Problem:
The rigid metal reservoir hydration system of the present invention provides an improvement in volumetric stability over the leading plastic reservoir hydration systems. In a controlled test, three of the leading plastic reservoir hydration systems and the rigid metal reservoir hydration system were filled with water to capacity and were secured to the bottom of a vessel filled with water with measuring lines to indicate volume. Each of the hydration systems were drained through their drinking tubes, until empty, and the water in the vessel was measured for displacement compared with its starting measurement. While all of the plastic hydration reservoirs shifted form by a displacement of 3,000 cubic centimeters, the rigid metal reservoir hydration system experienced zero volumetric displacement.
As such, it is clear that neither water bottles nor currently available backpack-mounted hydration systems with collapsible plastic bladders are ideal.
The present invention's contoured and low-profile shape made possible through new and novel metal forming, assembly, and production processes; check-valve; inlet and outlet; and structural features are novel aspects that make a metal reservoir hydration system viable and highly desirable, particularly given the rising concerns with possible side effects of plastic water containers as well as the typical pain points experienced with the use of plastic reservoirs. As described above, the present invention eliminates the taste of any plastic or chemical from the dispensed drinking water, eliminates the use of plastic polymeric compounds and plasticizers which may exhibit estrogenic activity (EA) leaching into the system's drinking water, reduces the amount of cleaning required, provides a mold and mildew resistant solution, provides a more puncture-resistant solution, provides significant improvements in thermal insulative quality to keep water and other drinks cold, eliminates condensate sweating, and provides an improvement in volumetric stability.
Furthermore, although the present invention may utilize a typical plastic drinking tube, the present invention may also utilize a flexible metal tubing, such as flexible copper tubing or similar metal tubing for use in the drinking tube assembly, which would further limit the water's exposure to plastic for reasons detailed above.
The present invention also differs from traditional backpack-mounted hydrations systems in that while current collapsible plastic reservoirs are mounted inside a compartment within a backpack and largely unseen, the rigid metal reservoir of the present invention presents an embodiment which may itself serve as the structural element of the back-mounted hydration system, with minimal textile elements around it, offering an exposed metal aesthetic or style element to complement its utility. Furthermore, metal elements may be added to or molded into the shape of the metal reservoir including but not limited to rings, mounts, handles, pockets, bungee cord, paracord, etc. to which users may mount, hang, or stow items during outdoor activities.
The present disclosure provides for a novel hydration system which incorporates a rigid, low-profile, contoured reservoir made of stainless steel or another suitable non-plastic material that replaces typical plastic water bladders and a flexible metal drinking hose in backpack-mounted hydration systems. The rigid metal reservoir hydration system solves several problems and health concerns associated with plastic hydration systems.
Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout, the various views and embodiments of a rigid metal reservoir hydration system are illustrated and described, and other possible embodiments are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations based on the following examples of possible embodiments.
Referring to
The water reservoir 11 may be contoured in such a manner as to conform to the shape and curvature of a user's back for increased comfort and in such a manner as to easily fit in a hydration bladder compartment in a typical backpack or in a backpack designed primarily for use with a hydration system.
The drinking tube 15 may be constructed with a flexible plastic material, which is common among currently available hydration systems, or it may be constructed of flexible copper tubing, which provides a novel means of supplying water or other liquids to the user without the use of plastic, which may be of concern to many users for aforementioned reasons. Furthermore, the copper tubing may be surrounded by a sheath comprised of carbon fiber or another suitable composite material that will allow the copper tubing to bend, but will restrict the bending radius enough so that the copper tubing will not become creased or crimped. The sheathing may be fitted tightly over the copper tubing, but not glued or permanently attached to the outer wall of the tubing, or it may be glued, epoxied, or otherwise permanently affixed to the outer wall of the tubing.
In this particular embodiment, the Inlet 12 comprises a lid 17 and a lid receiver 20, which is affixed to the reservoir 11, as shown in
In this particular embodiment, the outlet 38 comprises the bottom spout tube 21, the bottom spout gasket 22, and the screw cap 14. A hole on the bottom side of the reservoir 11 receives the bottom spout tube 21, which is affixed to the reservoir 11. The bottom spout tube 21 and the screw cap 14 are both threaded in such a manner that the screw cap 14 may be attached to the bottom spout tube 21 by rotating the screw cap clockwise about the bottom spout axis 36, shown in
In this particular embodiment, a bite valve 16 is affixed to one end of the drinking tube 15. The bite valve 16 allows a user to control the flow of water through the hydration system 10.
In this particular embodiment, a hole at the top of the reservoir 11 receives the check valve assembly 13, which comprises the upper check valve body 18, the lower check valve body 23, the check valve spring 24, and the check valve ball 19.
Referring to
Referring to
Referring to
The purpose of the check valve assembly 13 is to allow air to make up the volume of liquid leaving the reservoir 11 as the user of the system 11 drinks the liquid through the drinking tube 15 and bite valve 16. As water exits the reservoir 11 accordingly, the air pressure inside the reservoir becomes lower than the atmospheric pressure outside the reservoir 11, and air is allowed to enter the reservoir 11 through the check valve assembly 13 as the vacuum force created exceeds the force of the check valve spring 24, breaking a seal created between the check valve ball 19 and the upper check valve body 18.
It is understood that a person skilled in the art understands the typical operation and function of a standard check valve, and as such, not every detail of the operation of the check valve assembly 13 of the particular embodiment detailed above may have been described. Accordingly, it is also understood that various other check valve types may be used for the above purpose.
In this exploded illustration, a more detailed view of the Inlet 12 can be seen, which comprises a lid 17 and a lid receiver 20. A hole near the top of the reservoir 11 receives the cylindrical lid receiver 20, which is affixed to the reservoir 11. The Inlet 12 is centered about the lid axis 35. It is understood that the location of the Inlet may vary for different embodiments of the system 10.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring now to
Referring now to
The following steps reference parts from
Referring now to
Weight may be a concern to users of the present invention, as many hikers, backpackers, and other users of hydrations systems often wish to minimize the weight of the loads they carry while performing outdoor and sporting activities. Therefore, efforts will be made to make the present invention as lightweight as possible. One such method may be to minimize the thickness of the metal walls of the reservoir 11. Since the thinning of the metal walls will typically reduce the resistance to deformation or crushing under stress or loads applied to the reservoir walls (e.g. dropping the reservoir on the ground, falling on top of the reservoir 11 while it is in a backpack, etc.), a sheath made of carbon fiber material or another light-weight composite may be wrapped around, conformed tightly to, and adhered to the metal reservoir walls in order to add strength to the metal walls of the reservoir 11. This in combination with various cross-sectional shapes of the reservoir 11 will help ensure a strong and lightweight hydration system reservoir 11.
It will be appreciated by those skilled in the art having the benefit of this disclosure that this rigid metal reservoir hydration system represents a new category in the outdoor products hydration space and solves many problems of current hydration systems for hikers, backpackers, cyclists, hunters, fishermen, and any other person needing hydration while enjoying an outdoor or sporting activity. As mentioned above, the present invention's contoured and low-profile shape made possible through new and novel metal forming, assembly, and production processes; check-valve; inlet and outlet; and structural features are novel aspects that make a metal reservoir hydration system viable and highly desirable, particularly given the rising concerns with possible side effects of plastic water containers as well as the typical pain points experienced with the use of plastic reservoirs. As described above, the present invention eliminates the taste of any plastic or chemical from the dispensed drinking water, eliminates the use of plastic polymeric compounds and plasticizers which may exhibit estrogenic activity (EA) leaching into the system's drinking water, reduces the amount of cleaning required, provides a mold and mildew resistant solution, provides a more puncture-resistant solution, provides significant improvements in thermal insulative quality to keep water and other drinks cold, eliminates condensate sweating, and provides an improvement in volumetric stability.
It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to be limiting to the particular forms and examples disclosed. On the contrary, included are any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope hereof, as defined by the following claims Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4140150 | Rundell | Feb 1979 | A |
5207676 | Canadell | May 1993 | A |
6199729 | Drzymkowski | Mar 2001 | B1 |
7311231 | Noell | Dec 2007 | B2 |
7490740 | Robins | Feb 2009 | B2 |
7600656 | Karl | Oct 2009 | B2 |
8839996 | Parazynski | Sep 2014 | B2 |
9186007 | Srivatsan | Nov 2015 | B2 |
9820557 | Gottlieb | Nov 2017 | B2 |
9924781 | Kalalau | Mar 2018 | B2 |
20020092858 | Bowman | Jul 2002 | A1 |
20020179647 | Hall | Dec 2002 | A1 |
20050191355 | Foss | Sep 2005 | A1 |
20060071006 | Lojkutz | Apr 2006 | A1 |
20070056998 | Olson | Mar 2007 | A1 |
20070170280 | Ridgeway | Jul 2007 | A1 |
20110127349 | Srivatsan | Jun 2011 | A1 |
20130186906 | Underhill | Jul 2013 | A1 |
20150150394 | Chai | Jun 2015 | A1 |
20160175866 | Kalalau | Jun 2016 | A1 |
20170231371 | Li | Aug 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190150597 A1 | May 2019 | US |