Packaging and transport of food are important components to maintaining freshness and reducing damage to food before and after food gets to the consumer. For example, vegetables, eggs, and baked goods often need to be protected within their packaging to compensate for any rough transport. If the food is damaged, it is no longer appealing and, sometimes, no longer useable.
Another example of a common grocery staple is fruit, wherein the variety, quality and quantity of fruit vary by season, location of retail sale, and perishability of a given fruit. Food retailers typically seek to offer a wide choice of fruit products to their customers notwithstanding difficulty and cost. All types of food pose unique availability and transport challenges. For example, many berries are only available at certain times of year and only in certain locations. Further, as a group, berries easily bruise and spoil and/or develop mold from exposure to excess moisture.
To address the above issues, growers and wholesalers use specialized plastic containers, such as plastic clamshells or tills that are assembled by cutting holes in thermoformed parts. These plastic containers provide physical protection for the contents and have vents in them to allow for drainage and airflow.
To make the plastic containers, manufacturers use a punch and die assembly, wherein the punch and die assemblies are guided to each other using a set of pins. The current standard punch assembly is comprised of a punch holder, several punches, and a plate on the outside of the assembly that mounts against the holder and holds the punches in place. The die assembly is comprised of a die with a plurality of holes that the punches mate to. Several die assemblies then mount to a larger plate to enable several thermoformed parts to be cut simultaneously.
Standard punches have a number of issues that lead to problems and cost issues in the manufacturing process and in the resulting containers, such as: poor stability; thin blades; uniform thickness; attachment too far from the blade; and excessive flexing. These drawbacks result in punches that break easily. Additionally, it is difficult to replace the punches because the entire punch assembly must be taken apart to replace one punch. Another drawback is that the machines that the standard punch and die assemblies attach to easily damage the assemblies and thereby increase maintenance requirements for the assemblies. When the punch assemblies are damaged, they do not cleanly cut the vents and therefore, the plastic containers have rough-cut vents (i.e., chads) that, for example, cut the fruit or affect the roots of the plant. Sometimes, the parts of the plastic container that are supposed to be cut out remain in the container with the food creating a safety issue. Un-removed chads can also adversely affect how the product moves through the automation systems. Further, they present potential issues if consumers ingest them.
A new punch assembly is needed with punches that are more resistant to damage. Further, a punch assembly is needed that has punches that, if damaged, can be more easily replaced.
The disclosed device is a rigid punch tool, which, when assembled into a punch and die assembly, can be used to cut vents into plastic thermoformed containers. More specifically, in one embodiment, the rigid punch tool is comprised of a holder with several slots and a plurality of punches. Each punch is comprised of a blade, a base, and attachment points, such as a clearance hole and a tapped hole. Each punch's base fits into one of the several slots in the holder and each punch's base is wider than its blade. Each of a plurality of clearance bolts fits into a clearance hole and helps secure a punch to the holder. Each of a plurality of tapped bolts fits into a tapped hole and helps secure a punch to the holder.
In another embodiment, the rigid punch tool is comprised of a holder with several slots; a plurality of punches, each punch comprising a blade, a base, and a plurality of mounting holes, wherein the base of the punch fits into one of the several slots in the holder and is wider than the blade; and a plurality of mounting bolts, each mounting bolt fitting into a mounting hole and mounting a punch to the holder.
In yet another embodiment, the rigid punch tool is comprised of a holder with several slots; a plurality of punches, each punch comprising a blade, a base, and a plurality of dowel pin holes, wherein the base of the punch fits into one of the several slots in the holder and is wider than the blade; a plate attached to the holder by a plurality of screws, wherein the plate holds the punches in place; and a plurality of dowel pins attached to the plate, wherein the placement of the dowel pins on the plate causes the dowel pins to line up to the dowel pin holes when the plate is attached to the holder.
Various embodiments will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover application or embodiments without departing from the spirit or scope of the claims attached hereto. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting.
The disclosed device is a rigid punch tool used to cut holes or vents into thermoformed parts to create specialized plastic containers. More specifically, in one embodiment, the rigid punch tool is comprised of a holder 104 with several slots 902, wherein each slot 902 is comprised of attachment points such as, but not limited to, a clearance hole 1002 and a tapped hole 1004 that can be vertically or horizontally in line with each other or offset from each other; a plurality of punches 102, each punch 102 comprising a blade 702, a base 502, and two holes to line up with the clearance hole 1002 and the tapped hole 1004, wherein the punch's base 502 fits into one of the several slots 902 in the holder 104, wherein the punch's base 502 is wider than its blade 702, and wherein the blade 702 extends above the holder 104; a plurality of clearance bolts 202, each clearance bolt 202 fitting into a clearance hole 1002 through the inside of the holder 104 and the back of a punch 102 and mounting the punch 102 to the holder 104, as illustrated in
In another embodiment, illustrated in
In some embodiments, the holder 104 is a rectangular block with a plurality of slots 902 or openings on its outside surface, as illustrated in
In another embodiment, each slot 902 in the holder 104 can have two tapped holes 1004 located where the punch base 502 will mount to the holder 104. Preferably, the two tapped holes 1004 will align so that one tapped hole 1004 is located directly above the other tapped hole 1004, resulting in an upper tapped hole and a lower tapped hole, as illustrated in
The dimensions of the holder 104 can vary based on the type of punch 102 that is used. For example, in one embodiment, the holder 104 can be approximately 6.1 to 6.5 inches long, 3.5 to 3.8 inches wide, and 1.5 to 2.0 inches tall, as illustrated in
In some embodiments, the punch 102, which is the component of the rigid punch tool that cuts the vents and openings into plastic containers, is an elongated object with a generally rectangular base 502 and a blade 702 protruding from the front and the top of the base 502, as illustrated in
The dimensions of the punch 102 can vary based on the location of the holes used to secure the punch 102 to the holder 104. For example, in one embodiment, each punch 102 can be approximately 1.8 to 2.0 inches tall, 0.20 to 0.40 inches wide, and 0.50 to 0.60 inches deep, as illustrated in
In an embodiment where the punch 102 has two holes, a first hole can be located near the top part of the middle of the punch, as illustrated in
In other embodiments, the first and the second holes can completely penetrate the punch base 502, as illustrated in
Other embodiments are possible, wherein one or both holes can be located on one or both sides or where one hole, both holes, or neither hole penetrates completely through the punch 102.
The design of the disclosed punch 102 enables the punch 102 to be bolted near the blade 702 and at the punch base 502. This attachment mechanism better secures each punch 102 to the holder 104 and enables the punch 102 to be considerably more stable and rigid than previous versions of punches. For example, the blade 702 is much less likely to move when it is pushed on its side, thus resulting in fewer blade breakages.
Additionally, by attaching each punch 102 to the holder 104 using individual bolts, instead of a mounting plate, a user can more easily replace individual punches 102 if and when they break or are otherwise damaged. Therefore, the disclosed rigid punch tool easily accommodates a damaged punch 102 by enabling a user to replace the damaged punch 102 with a new, identical punch 102 and not wasting the remaining components of the rigid punch tool.
Additionally, a user can easily replace or reuse a worn or abused holder 104. For example, the holder 104, which is designed to fit onto a larger die assembly, as illustrated in
In an alternative embodiment, the rigid punch tool is comprised of a holder with several slots; a plurality of punches, each punch comprising a blade, a base, and a plurality of dowel pin holes, wherein the base of the punch fits into one of the several slots in the holder and is wider than the blade; a plate attached to the holder by a plurality of screws, wherein the plate holds the punches in place; and a plurality of dowel pins attached to the plate, wherein the placement of the dowel pins on the plate cause the dowel pins to line up to the dowel pin holes when the plate is attached to the holder.
The disclosed rigid punch tool can be made of plastic or metal. For example, in a preferred embodiment, the punch 102 and the holder 104 are made of steel for maximum strength. Various types of steel that can be used include, but are not limited to, carbide, H13 tool steel, D2 tool steel, A2 tool steel, etc.
As described above, the disclosed rigid punch tool is designed to fit onto a larger die assembly, as illustrated in
This application is a continuation of U.S. patent application Ser. No. 15/156,266, filed May 16, 2016 and titled RIGID PUNCH TOOL, which claims the benefit of U.S. Provisional Patent Application No. 62/161,680, filed May 14, 2015 and titled RIGID PUNCH TOOL.
Number | Date | Country | |
---|---|---|---|
62161680 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15156266 | May 2016 | US |
Child | 15847629 | US |