“Not Applicable”
“Not Applicable”
“Not Applicable”
“Not Applicable”
On Feb. 22, 2008, a problem was encountered during the routine molding of decorative souvenirs using an epoxy resin with alabaster as a filler material. The resin and alabaster, after mixing, was foaming, causing the volume of the material to expand and subsequently ruining the souvenirs. After some initial investigations and trials, moisture in the alabaster was theorized to be the problem. As a solution, the alabaster powder was dried in an oven for 20 minutes at 300 degrees F. The resulting subsequent production showed that the drying corrected the problem with the mixture and the foaming was eliminated. The foamed material, while being a rigid material, had a core matrix similar to flexible polyurethane foam. The core was stiffer than normal flexible polyurethane but still maintained some flexibility which was unusual. The information was committed to memory.
In October of 2009, discussions were had about the manufacturing of siding shingles using the resulting formulation from the trials detailed above. As a result, a molded open pour process was proposed for the production of the shingles. The following beginning formulation was proposed with a water content based on the February 2008 observations.
Initial formulation for the development of an in mold painted siding shingle for exterior cladding for use in residential and non-residential application consisting of the following:
A cost analysis was completed based on these initial trials. No parts were made or any other experimentation completed due to lack of funds.
As a result of these successful first trials, the molded siding shingle concept was conceived and a cost analysis showed promise for this process of manufacturing. At the same time in mold painting of the shingles was discussed, as were various process and equipment issues. The art of in mold painting flexible, rigid, and semi-flexible urethane products is an important part of the cost effectiveness of this initial design concept. Knowledge in this field stems from prior experience in producing molded flexible polyurethane foam for the automotive and seating industries using high speed turntables and in mold painting.
Around the first of November, the team pooled their money and had a shingle mold made. Chemicals and process equipment were obtained for the purpose of running sample parts.
On Nov. 11, 2009, the process of running test parts began. The following formulation was used:
Good parts were obtained after a day of experimentation. Parts were run using different formulations during the first two weeks in November using various filler materials, water parts, catalyst, and process parameters. During this period the idea of an insert for the mold was discussed. The insert system would allow the use of one mold with the ability to vary the pattern, grain, reveal, and thickness of the siding shingle. At the same time, many other products were discussed and the insert system would work on these products also. The initial prototype mold was modified on design to accommodate this insert feature.
On Nov. 19, 2009, parts were run using the modified mold and insert concept. The following formulation was run.
On Nov. 30, 2009, good parts were produced and the insert concept worked. At this time parts were made using the in mold paint concept. A few days of trials involving different paint and mold release combinations were tried. On Dec. 14, 2009 one combination worked well, producing a paint that bonded to the shingle substrate. The bond between the paint and shingle was excellent, passing the cross hatch test with no paint pull-up. Good parts were run in December with various filler materials trialed. The results showed that most filler material will work but that some are not cost effective.
Continued trials resulted in several variations of the current formulation with the best results coming from the formulation utilized on Sep. 18, 2010. The formulation consisted of the following:
Information on experiments, cost analysis, and other details are saved as hard copies.
Testing of the in-mold coating over foam substrate for humidity, freeze thaw, adhesion, boiling water, and heat buildup was conducted with samples produced with the formulation detailed in example 4 above. All tests were conducted as planned with the exception of the heat buildup test. With the foam core, the heat will not penetrate the substrate enough to get a good reading from the bottom. Instead an infrared gun was utilized to read the surface heat and the resulting measurements were used as a guide. Though different than the standard procedure it should not change the results.
In conclusion, all tests were performed on the foam substrate as indicated, with very good results on all testing. The adhesion with a 5B showed no loss of coating in standard adhesion test and Boiling Water Adhesion test. The Freeze Thaw test showed no cracking or separation of any kind after 20 cycles. Humidity test for 300 hours detected no change in the coating at all. The Heat Buildup, although adjusted for the insulation properties of the foam, indicated a very small temperature change on the surface of the material. This is in step with a lighter colored material as supplied and it is not expected that any warpage should result with most dark colors on this substrate.
In addition to the above mentioned tests conducted by an outside laboratory, internal tests have been conducted that reflect the following results on a painted substrate in line with the examples one thru four detailed above.
As detailed by Chittolini in U.S. Pat. No. 5,859,078, Polyurethane is well known as a base product for the manufacture of rigid, flexible, and semi flexible foams. Polyurethane foam is produced by the intimate mixing of an isocyanate component and a polyol component which contains all or some of the following homogeneous mixtures:
The polyol component and the isocyanate component are thermostatically controlled, metered, mixed and poured by means of suitable machines. Various formulations of the polyol component are used to produce different types of rigid, flexible, or semi-flexible foams by various processes including but not limited to;
Polyurethane is well known as a base product for the manufacture of a wide variety of products including cushions, mattresses, seat padding, arm-rests, bumpers, insulation in refrigerators and freezers, insulating panels for building, insulating for pipes and tanks, as well as high-density rigid foams for furniture.
Polyurethanes and urethanes are very much in the public domain. Flexible, rigid, and semi-flexible are a few variations of the base polyurethane formulation. The present invention varies from other common polyurethane systems as detailed in U.S. Pat. No. 5,859,078 in that no solvent blowing agents are required. The urethanes and/or silicates require moisture to cure and expand, with the addition of fillers that enhance the expansion effect.
Composite materials detailed in U.S. Pat. No. 7,037,865 use urethanes and high filler load plus reinforcing materials to create composites. The present invention improves upon and solves problems with this patent as detailed by the following;
The invention pertains to a series of formulations for and a variety of method for producing foamed materials with rigid characteristics consisting of a core matrix similar to flexible polyurethane foam. The core, which is stiffer than normal flexible polyurethane still maintains some flexibility.
“Not Applicable”
The invention detailed in the claim below is suitable for use in any of the following list of products for interior or exterior application such as, but not limited to, roof shingles, siding shingles, siding boards, trim, moldings, garage doors, ceiling panels, fence boards, stone, and brick panels. In addition, the material formulations detailed can be used to repair existing poured basement walls, cement block walls, columns, and various other structural components making these impervious to water intrusion. Additional details of the preferred embodiments of the invention are discussed in the latter part of the Claims.