The present invention concerns an assembly formed by a wheel rim and an inflatable tire tread bearing support inflated to a given pressure, the said assembly, together with a tire, forming a rolling assembly that can allow the said tire to roll when its pressure is low or even zero. The said rim, designed for the mounting of the tire, is more particularly a rim with at least one rim seat inclined towards the outside.
U.S. Pat. No. 6,092,575 describes a wheel rim of the type mentioned above. It comprises at least a first truncated conical rim seat whose generatrix has an axially external end on a circle with diameter smaller than the diameter of the circle on which the axially internal end of the said generatrix is located. The truncated conical seat is extended axially outwards by a projection or hump whose outside diameter is smaller than the diameter of the axially internal end of the rim seat's generatrix. In the preferred shape of the rim, the said first rim seat is extended axially inwards by a bearing surface designed to receive a support ring for the tread, which is deformable and can be pushed over the said surface. Limited axially by a rim stop designed to keep the bearing support in its axial position, the said bearing surface is extended by a mounting groove which is needed to enable the tire beads to be positioned on the rim. The rim is completed by the addition of a second rim seat also inclined outwards and extended axially on the inside by a projection and axially inwards by a flange that connects to the mounting groove.
The tire tread bearing support generally used with the rim described above is a bulky, rigid support made of an elastomeric or plastic material. Besides, it is heavy despite the numerous cavities between its base and its crown. However, supports for rolling at low or zero tire pressure should be as light as possible, they should have as high a load-bearing capacity as possible without affecting their lightness, and should allow the driver of a vehicle fitted with them to control his vehicle despite the loss of pressure, more especially if the said loss takes place when the tire is rolling under the action of drift stresses.
To achieve the above objectives, the invention proposes a wheel rim of the type described above, but adapted to receive a tire bearing support in the form of a toric membrane, a support which with the said rim and tire forms an assembly that is easy to mount and remove. Accordingly, the mounting rim, which is designed to form a rolling assembly with a tire and an inflatable and inflated tread bearing support and which comprises on each side of the equatorial plane a rim seat inclined axially outwardly and radially inwardly and extended radially outwardly by a projection or hump, is characterized in that it comprises, axially towards the inside between each rim seat for a tire bead and the equatorial plane XX′, at least one truncated conical seat inclined inwards and designed to receive a bead of a bearing support for the tire tread.
A truncated conical seat for a bearing support bead is said to be inclined inwards when, in a manner similar to a rim seat for a tire bead, its axially inner end is a circle of diameter smaller than the diameter of the axially outer end, which is the largest diameter and by convention the diameter of the seat. A truncated conical seat for a bearing support is a seat whose generatrix makes an angle between 0° and 20° inclusive relative to a line parallel to the rotation axis, and a cylindrical seat is regarded as a special case of a truncated conical seat.
The two seats on either side of the equatorial plane designed to receive the tire beads may have equal diameters: the rim in question is then said to be symmetrical and comprises at least one mounting groove arranged axially between the seats for the beads of the bearing support. The space required for the fitting and functioning of the internal mechanical parts on the wheel can be advantageously increased by reducing the depth of the mounting groove or dispensing with it entirely, the said reduction or suppression going together with the use of a rim in which the respective diameters of the two tire bead seats are unequal: such a rim is termed asymmetrical and may or may not comprise a mounting groove located axially between the two seats for the bearing support beads. Whether the tire bead seats are equal or unequal, the bearing support bead seats can also be equal or unequal. To facilitate mounting of the assembly, it is advantageous for the inequality of the tire bead seats to be associated with an inequality between the bearing support bead seats, this inequality being in the same direction and of the same size.
The two seats on the same side of the rim, the seats respectively intended to receive one tire bead and one tire bearing support bead, may be axially adjacent and their diameters are then equal. The said two seats are preferably joined by a truncated conical portion whose generatrix, relative to a line parallel to the rotation axis, makes an angle of between 35° and 55° open radially towards the outside and axially towards the inside. The said truncated conical portion is advantageously extended axially by a cylindrical portion, these two portions serving as connection elements between the two truncated conical seats.
In the above-preferred variants, the diameter of the bearing support bead seat is either equal to or larger than the diameter of the tire bead seat. The diameter of the bearing support bead seat may be smaller than the diameter of the tire bead seat. In that case the generatrix of the cylindrical portion is axially connected to the generatrix of the bearing support bead seat by a straight line segment either perpendicular to the rotation axis of the assembly, or inclined relative to the direction parallel to the rotation axis by an angle that may be between 60° and 90°, the bearing support bead seat then being directly connected to the bottom of the rim groove, or to the bottom of the rim or to a mounting groove for the bearing support. The solution described allows the support structure to be inflated to a higher pressure.
Whether the rim considered is symmetrical or asymmetrical, the mounting of the bearing support beads is greatly facilitated if the bearing support bead seat is extended in a manner juxtaposed to and axially towards the inside by a truncated conical portion whose generatrix, relative to a line parallel to the rotation axis, makes an angle of between 20° and 50° open radially towards the inside and axially towards the inside, the said truncated conical portion being connected either to the bottom of the rim in the case of a rim with no mounting groove, or to the vertical wall of a groove, or to the bottom of the groove itself, in the case of a rim with a groove.
The tread bearing support may be a toric membrane inflated to a given pressure and provided with a cap radially covering a crown reinforcement, the said cap being connected via two sidewalls to two beads, each bead being reinforced by an annular element to ensure that the bearing support bead is tight enough on the rim seat. At its crown the said membrane may be reinforced by a hoop reinforcement consisting at least of circumferential reinforcement elements, which may or may not be practically inextensible. It may also be reinforced at its crown by a highly extensible reinforcement armature whose reinforcement elements are designed to break under a given tension higher than the sum of the tension produced by the centrifugal force to which it may be subjected and the tension produced by a difference of internal pressures between the pneumatic cavity of the membrane and the pneumatic cavity located between the membrane and the inside of the tire, as described for example in patent FR 2 756 221, to which reference is made. In the latter case, and if pressure is lost in the cavity between the membrane and the inside of the tire, the membrane expands circumferentially to fill the inside space initially occupied by the tire. In the aforementioned crown variants, the bearing support advantageously comprises a tread or cap made from a rubber mix, whose thickness can vary depending on the uses envisaged, and the said tread can be provided with profiling elements such as grooves, ribs or rubber blocks. The support tread is connected to the beads of the said support by sidewalls preferably formed exclusively of one (or more) layer(s) of rubber mix(es), the sidewall thickness being radially variable such that the layer(s) adapt perfectly to the contour of the tire's sidewalls and beads after a loss of pressure. The said bearing support beads are provided with a circular reinforcement ring which is circumferentially inextensible.
The said support membrane may be open or closed. If it is open, it may be pressurized either directly (when its internal lining will be impermeable to the inflation gases customarily used) or it may be pressurized via an air chamber impermeable to the said gases. If it is closed, it takes the form of a tube provided with a suitable inflation means, which may be integral with the means for inflating the cavity between the membrane and the inside of the tire, or completely separate from the said means.
The characteristics of the invention will be better understood with the help of the description below, which refers to the drawing illustrating example embodiments in a non-limiting way and which shows:
FIG. 1: Schematic representation of a simplified variant of the assembly according to the invention
FIG. 2: Similar representation of a second variant in accordance with the invention
FIG. 3: Variant with a cylindrical portion in accordance with the invention
FIGS. 4 and 5: Two variants, with different diameters of the seats respectively for the tire bead and the support bead in accordance with the invention
FIG. 6: Schematic representation of an asymmetrical rim variant in accordance with the invention
FIG. 7: Schematic representation of an additional view of
In
As described in U.S. Pat. No. 6,092,575, the tire to be mounted on the rim J comprises a tread connected by two sidewalls 21 to two beads 20′ and 20″. The said tire is reinforced by a radial carcass reinforcement 22 anchored in each bead 20′ (20″) by being turned up around a bead wire 24, which in the example shown is a bead wire of the “braided” type. The carcass reinforcement 22 is tangential to the bead wire 24 at a point A, through which a line parallel to the rotation axis can pass. At this point A the tangent AT to the meridian point of the carcass reinforcement 22 makes relative to the said line an angle of 85° which is open towards the outside. Each bead 20′ (20″), whose axial width is comparable to the known and usual tire bead widths, has an external contour mainly formed of a bead toe whose outer face 20A makes relative to the rotation axis an angle γB of 60°±10° which is open radially and axially towards the outside, and the said face 20A is extended radially inwards by a bead seat with a truncated conical base 20B which, relative to the rotation axis, makes an angle αB between 10° and 45° which is open axially towards the inside and radially towards the outside, the angle αB being larger than the angle αj, which is the angle of the seat of the rim 10′, by an amount between 3° and 15°. The seat 20B is extended axially inwards by a truncated conical generatrix 20C corresponding to the bead hook which, relative to the rotation axis, makes an angle βB of 45°±10° which is open axially towards the inside and radially outwards, and is extended on the inside by a wall 20D essentially perpendicular to the rotation axis.
The bearing support 3 for the tread is a rubber membrane impermeable to the usual inflation gases, comprising a cap which radially covers a crown reinforcement as depicted in FIG. 7. The said cap is connected via two support sidewalls 33 to two beads 30′ and 30″. Depending on the intended use of the tire of the rolling assembly, the crown reinforcement of the support cap may be of two kinds:
Referring to
In the first variant described above the beads 30′ and 30″ of the tread support membrane serve to block the beads of the tire mounted on its service rim. The lateral forces acting on such beads when the rolling assembly is required to roll with zero tire pressure and under conditions of pronounced drift are high, and the variant shown in
The variant illustrated in
The said cylindrical portion 15′(15″) can be connected directly to the bearing support seat 12′ (12″) (FIG. 3). To create a proper rim flange for the support bead, a flange required when the bearing support is used under very high pressure to avoid axial outward displacement of the tire bead during mounting, the cylindrical portion 15′ (15″) is connected to the seat 12′ (12″) by a portion 16′ (16″) whose generatrix 160′ (160″), relative to the trace of a plane parallel to the equatorial plane, makes an angle ηj which is radially and axially open towards the outside and is between 0° and 20°, the value 0° being included in the range. The said portion 16′ (16″) may have a height H16 between 2 and 15 mm (FIG. 4), depending on how firmly it is desired to keep the said support bead in place. When the said height is relatively large, and in the case when the portion 16′ (16″) consists of the walls of the groove 13, a second mounting groove 17 must be provided for the easy and correct mounting of the support beads (FIG. 5).
In all the variants described so far a mounting groove was needed, at least for mounting the tire bead 20″ onto its seat 10″, since the mounting operation requires the said bead to be outside the rim before being positioned on the seat. It is well known that the presence of mounting grooves is not an ideal solution for designers of vehicles that roll on tires, because it greatly reduces the space available inside the rim. As is already known as such, the depth of the mounting groove(s) can be made smaller by making the rim asymmetrical, due to the fact that the diameters of the tire bead seats and those of the bearing support bead seats are unequal.
Simultaneous asymmetry of the rim seats for the tire beads and the support beads is the solution that allows the easiest possible mounting of the assembly, but it does not go beyond the scope of the invention if the asymmetry involves only the rim seats for the support beads.
Number | Date | Country | Kind |
---|---|---|---|
00 02585 | Feb 2000 | FR | national |
This application is a continuation under 35 U.S.C. § 120 of international application Serial No. PCT/EP01/02077, filed Feb. 23, 2001 and published as WO 01/64459 on Sep. 7, 2001 in French, which further claims priority under 35 U.S.C. §119 of French application Serial No. 00/02585 filed Feb. 28, 2000.
Number | Name | Date | Kind |
---|---|---|---|
506424 | Ducasble | Oct 1893 | A |
5082041 | Shiozawa et al. | Jan 1992 | A |
5139067 | Shiozawa et al. | Aug 1992 | A |
5232033 | Durif | Aug 1993 | A |
5634993 | Drieux et al. | Jun 1997 | A |
5749982 | Muhlhoff et al. | May 1998 | A |
5785781 | Drieux et al. | Jul 1998 | A |
5787950 | Muhlhoff et al. | Aug 1998 | A |
6035913 | Bapt et al. | Mar 2000 | A |
6092575 | Drieux et al. | Jul 2000 | A |
6283185 | Rivaton | Sep 2001 | B1 |
6415839 | Pompier et al. | Jul 2002 | B1 |
6418992 | Drieux et al. | Jul 2002 | B1 |
6679306 | Steinke | Jan 2004 | B2 |
6705368 | Glinz et al. | Mar 2004 | B2 |
Number | Date | Country |
---|---|---|
0377338 | Jul 1990 | EP |
0445963 | Sep 1991 | EP |
2149274 | Mar 1973 | FR |
2699121 | Jun 1994 | FR |
2713557 | Jun 1995 | FR |
2756221 | May 1998 | FR |
Number | Date | Country | |
---|---|---|---|
20030025384 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTEP01/02077 | Feb 2001 | US |
Child | 10211655 | US |