Information
-
Patent Grant
-
6807790
-
Patent Number
6,807,790
-
Date Filed
Friday, October 4, 200222 years ago
-
Date Issued
Tuesday, October 26, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Friedman; Carl D.
- Amiri; Nahid
Agents
-
CPC
-
US Classifications
Field of Search
US
- 052 289
- 052 702
- 052 7312
- 052 7321
- 052 82
- 052 248
- 052 246
- 052 698
- 052 921
- 052 922
- 052 931
- 052 251
- 052 262
- 052 259
-
International Classifications
-
Abstract
The present invention allows the planner of a multi-storey building project to remove concrete from the critical path of the structure and envelope completion. The system of the present invention accommodates various floor depths, conforms to alternative stud depths and, acts as a compression/tension member for a building during and after construction. The invention relies upon the use of cold-formed metal that is shaped to provide a ring beam which will accommodate the various criteria. A basic shape configuration has been generated to provide the most efficient utilization of materials. Simplifying installation for the many variable conditions that occur in buildings is therefore provided by this modular design, wherein designers and contractors can easily select and use specialized components to meet all design and construction requirements.
Description
FIELD OF THE INVENTION
The present invention relates to the field of commercial building construction, and in particular to buildings with concrete floors supported on steel joists, and preferably where the floors are composite steel and concrete structures.
BACKGROUND OF THE INVENTION
When using steel supported concrete floors in a building, the conventional practice is to erect the steel joists on support walls and to pour each concrete floor once the steel joists and floor pan have been placed. Further vertical walls for the next story of the building are then erected, and joists are supported on the walls. The construction proceeds one floor at a time with a separate concrete pour occurring for each floor, requiring numerous returns of the concrete pouring crew during construction. Further the labor used to erect walls is not required when the concrete is being set in place.
It would be highly desirable to be able to form up the entire building in an uninterrupted manner at one time and pour the concrete floors following the erection of the structure in an independent manner The alternate work of framing and concreting crews would be avoided, and significant cost savings in the construction would be achieved. In order to achieve this significant improvement, it has been found that changes are required in both the structural design of the building, and that these changes improve both the speed and convenience of construction, and the structural strength of the building both before and after the pouring of the concrete floors.
In civil engineering ring beams are used as continuous tension members surrounding the perimeter domes, hemispheres, and like structures which carry compression forces from loads supported by them and tension forces caused by the load seeking to spread the ring. The ring beam is designed to resist both forces. Ring beams need not be circular, but may be conformed to the shape of the structure in which it is incorporated. It is a compression/tension member to resist these forces in the structure.
For the use of structural members commonly known as joists, in conjunction with metal stud, wood stud or prefabricated wall panels, it is necessary to provide an effective means to distribute the resulting dead and live point loads resulting from these members. For the fastest speed of construction, it is of particular importance to have a joist-support-system that will spread loads along the wall concentrically, while at the same time allowing the erection of multiple floors without the need to have concrete in place. Presently the construction industry does not have an efficient system to enable the facilitation of all of the above criteria, via a pre-designed integrated-modular-component-system. In today's construction industry, it is overly complicated to satisfy all of the above criteria, and requires the use of many project-specific details.
STATEMENT OF THE INVENTION
The present invention has been developed to provide a modular approach to satisfy all of the above criteria. The system allows the planner of a multi-storey building project to remove concrete from the critical path of the structure and envelope completion. The system of the present invention accommodates various floor depths, conforms to alternative stud depths and, acts as a compression/tension member for a building during and after construction. The invention relies upon the use of cold-formed metal that is shaped to provide a ring beam which will accommodate the various criteria. Notably, the system spreads the concentrated load to many adjacent studs to limit the direct load on one stud along the load bearing wall. After 2 or 3 levels in a multi-storey project are formed, the concentrated loads are uniformly distributed over all the stud walls.
The ring beam structure is formed of a hat section that is positioned with the open side facing in, atop each level of the perimeter wall of the building at each floor location, which is supported by the wall, and provides a seat supporting the floor joists, and in turn supports the next level of the perimeter wall. Stabilizer struts are positioned at required intervals to stabilize the ring beam section during erection of the building frame and prior to concreting. In addition to serving as a structural member in the building frame the ring beam also acts as a passive pour stop to prevent the escape of concrete when floors are being poured. The ring beam also provides a continuous tension/compression ring at the perimeter of the floor system when tension/compression struts are installed at the splices of the ring beam. The basic shapes developed for supporting joists before and after concreting are a ring beam formed of a hat section with variable dimensioning capability, a stabilizer strut which can be fastened to the flanges of the hat section, and tension/compression struts which are similarly fastened to the flanges of adjacent hat sections, as will be detailed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The features of the invention will be apparent from a consideration of the following description in conjunction with the following drawings in which:
FIG. 1
is a cross section of a hat section for use as a ring beam of the invention,
FIG. 2
is a cross section of a two-part modified hat section having increased load capacity,
FIG. 3
is a section through a hat section ring beam illustrating its function as a passive pour stop,
FIG. 4
shows a stay-in-place anchor fastened to the ring beam,
FIG. 5
is an exploded view of the anchor of
FIG. 4
,
FIG. 6
is a vertical section of a building under construction,
FIG. 7A
is a section of a ring beam showing a stabilizer strut fastened thereto,
FIG. 7B
is a side view of the strut of
FIG. 7A
,
FIG. 7C
is a front view of the strut of
FIG. 7A
,
FIG. 8
is a section of a concrete floor,
FIG. 9
is a section of a tension/compression strut used for joining hat sections,
FIG. 10
is a further building section,
FIG. 11
is a perspective view of a partially completed building illustrating the wall studs, the ring beam, the floor joists and the floor pan for a corner of the building, and
FIG. 12
is an alternative construction of the ring beam and stabilizer using bent shape components.
DETAILED DESCRIPTION OF THE INVENTION
Referring to
FIG. 1
, ring beam for a building is formed of a hat section of sheet steel
10
shown in section, the beam being of indefinite length, and may be joined to like members to form a hollow three sided ring beam channel with vertical flanges
11
above and below the channel portion
12
. The depth of the channel portion
12
is selected to match the thickness of the walls of the building in which the ring beam is imbedded. It will be appreciated that the hat section
10
being formed from cold rolled sheet steel, that it is relatively easy to adjust the size of the channel portion to match both the depth of the wall, as the fabrication is entirely a matter of metal bending, or rolling requiring little in the way of machinery, and consequent capital expense.
The hat section ring beam may be conveniently fastened to the wall studs above and below the ring beam by self tapping sheet metal screws or hardened nails driven through the vertical flanges and/or through the channel portion of the beam. The channel portion
12
has a lower face
13
which provides a bearing surface for floor joists which may be inserted in the ring beam during building construction. A significant improvement in construction is achieved by connecting the wall studs to the vertical flanges of the ring beam, eliminating the C-section channel normally used for connection to the top and bottom of the vertical joists. Holes may be punched in the vertical flanges at appropriate intervals to space the vertical joists to the required spacing dependant on building strength requirements.
FIG. 2
illustrates a two part hat section having increased strength for load bearing. As before a hat section
10
is provided, which is nested within a second hat section
20
. The second or outer hat section
20
is provided with flanges
21
and
22
, and may be assembled with the hat section
10
either before or after the second hat section
20
is secured to the upper and lower walls.
FIG. 3
illustrates an open web joist
33
having a top chord
30
, a bar type web
31
and an end shoe
32
seated in a ring beam
10
. The joist
33
as illustrated is shown as Hambro type joist having a top chord which also acts as a shear connector with a subsequently poured concrete floor. Other types of steel joist may also be used with the ring beam
10
, with appropriate dimensional adjustments.
FIG. 4
illustrates one form of anchor for connecting diagonal bracing in a building under construction. The brace is bolted to the ring beam
10
, and has a threaded section
40
for tensioning a cable connected to the clevis
41
. These components are shown in an exploded view in
FIG. 5. A
threaded sleeve
42
mates with a bolt
40
and is fastened to an angle
43
. These components are assembled and provide an anchor for bracing the building under construction.
FIG. 6
shows in section a multi-story building having walls
60
and
61
and joists
62
and
63
. The structure being braced by cables
64
,
65
,
66
, and
67
.
FIGS. 7A
,
7
B, and
7
C illustrates a stabilizer strut
70
, which in
FIG. 7A
, is shown fastened to a ring beam
10
, by self tapping screws
71
. In
FIG. 7B
, a side view is shown, where a stiffener
72
is fastened to or formed from the body of the stabilizer strut
70
. The stabilizer strut
70
is shown front view in
FIG. 7C
, with the stiffener
72
facing the viewer. Typically the stiffener
72
is fastened to the stabilizer strut
70
by welding or the like, however other techniques that provide a vertical column strength to the stabilizer are also contemplated. Such stabilizer struts are positioned at intervals all along the hat section of the ring beam. In some cases it may be advantageous to align the position of the stabilizer strut with the studs in walls above and below the ring beam. Alternatively, the struts may be placed to impart adequate load bearing capacity to the ring beam for all construction loads. Once the concrete floors have been poured, the ring beam filled with concrete will have adequate compressive strength. If required, shear connections for the ring beam and concrete can be provided by fastening devices such as Nelson studs to a surface of the channel portion of the ring beam hat-section.
FIG. 8
illustrates a section through a building at a lintel. A joist seat extension
34
is positioned beneath the end shoe of a joist supported over the lintel thereby providing extra depth to the ring beam at the lintel. Wall portions
80
and
81
support the hat section
10
which hat section is of increased depth to form the lintel.
FIG. 9
shows in section a channel shaped tension/compression strut
92
which is installed with self-tapping screws
91
at splices of the hat section
10
thereby providing a tension/compression ring at the perimeter of the floor. A corner connector tension/compression strut (not shown), having the same cross-section as the tension/compression strut
92
of
FIG. 9
, but formed as a right angle in plan, would be used at each corner of each floor of the building, providing structural integrity to the ring beam.
FIG. 10
shows a system of construction which includes support shelves
102
for supporting a brick exterior on the walls of the building. For this purpose, pre-punched holes may be provided in the vertical base of the channel
12
. A support shelf can thus be provided at each floor of the building.
FIG. 11
is an isometric view of a corner of a building in accordance with the invention. A plurality of vertical studs
110
are positioned in the exterior wall of a building under construction. Mounted on top of the studs is a ring beam
10
supporting a series of “Hambro” open web steel joists
120
. Spanner bars
130
are interconnected with the joists
120
in the usual way, and removable decking
140
is supported by the spanner bars
130
. All of these elements are secured by appropriate cables braces as shown in FIG.
6
. Successive layers of wall surmounted by ring beams are constructed until the building is entirely framed. Subsequently, the concrete floors of the building are poured, with the ring beam of each floor used as the edge of the form-work, and the decking supporting the concrete in accordance with normal practice. Thus the different tradesmen for the different phases of the building may complete their portions of the building without awaiting the intermittent pauses while each performs only a segment of the work on the building. By deferring the concreting until completion of the frame, savings in cost are obtained and delays in construction are avoided.
A building constructed in accordance with the present invention will have superior strength to resist earthquake loads due to the presence of the ring beam around each floor of the building, which is integral with the concrete floors, thus assisting transfer of horizontal loads to the building foundations.
FIG. 12
illustrates in section an alternative means for fabricating the ring beam using flat strips of sheet steel, and bending the upper and lower Z-section shapes
210
to form the upper and lower sides of the hat section, and fastening them to the base sheet
211
by screws (not shown), welding or the like. The vertical flanges vertical flanges
11
are used as before for connection to the wall joists, and the stabilizer strut
212
is also connected to the flanges
11
as before, thus the ring beam may be fabricated using only metal shearing and bending equipment which is readily available in the construction material manufacturing industry. Only two metal bending operations are required to form the identical pieces
210
, and assembly of the components
210
and
211
can be done with simple jigs to align the components. Punching of holes for stud connection to the flanges
11
can also be done before bending or after.
A person understanding the above-described invention may now conceive of alternative designs, using the principles described herein. All such designs which fall within the scope of the claims appended hereto are considered to be part of the present invention.
Claims
- 1. A horizontal ring beam for incorporation into the exterior walls of a steel and concrete composite building in which steel joists support concrete floors of said building, said ring beam comprising a plurality of hat section members each having a channel section and flanges extending away from said channel section, spliced by tension/compression struts end to end to form a continuous ring around the perimeter of the building said members being mounted horizontally on the exterior wall of said building, with the channel section facing the interior of said building and the flanges being attached to the interior side of the walls above and below the channel section.
- 2. A ring beam as claimed in claim 1 wherein said channel section forms a seat for the end of a plurality of floor joists of the next level of a perimeter wall of said building.
- 3. A ring beam as claimed in claim 1 including a at least one vertically positioned stabilizer struts each having first and second ends fastened to said hat section flanges extending above and below said channel section respectively to improve the strength of said hat section in compression prior to concrete placement of said floor.
- 4. A ring beam as claimed in claim 1, including said ring beam being formed of a plurality of segments of hat section, said members being joined by tension/compression struts bridging and connecting said members.
- 5. A ring beam as in claim 1, where in said hat section is formed of a base sheet joined to a pair of oppositely positioned Z-sections.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2358747 |
Oct 2001 |
CA |
|
US Referenced Citations (15)