This application claims the benefit of U.S. patent application Ser. No. 10/870,168 filed Jun. 17, 2004, and entitled Positive Lock Ring Binder Mechanism, which is a non-provisional application of U.S. Pat. Appl. Ser. No. 60/553,231, filed Mar. 15, 2004, and entitled Positive Lock Ring Binder Mechanism, the entire disclosures of which are hereby incorporated by reference.
This invention relates to a ring binder mechanism for retaining loose-leaf pages, and in particular to an improved mechanism for controlling opening and closing movement of rings, for reducing snapping force of closing rings, and for securely holding closed rings in a locked position.
A ring binder mechanism retains loose-leaf pages, such as hole-punched pages, in a file or notebook. It has rings formed by two ring members for retaining the pages. The rings may be selectively opened to add or remove pages to the rings or closed to retain pages on the rings while allowing the pages to move along the rings. The ring members of each ring mount on two adjacent hinge plates. The hinge plates join together about a pivot axis for pivoting movement within an elongate housing. The housing holds the hinge plates so they may pivot relative to the housing and move the ring members between an open position and a closed position.
The undeformed housing is narrower than the joined hinge plates when the hinge plates are in a coplanar position (180°). So as the hinge plates pivot through this position, they deform the resilient housing and cause a spring force in the housing that urges the hinge plates to pivot away from the coplanar position and move the ring members to either their open or closed position. This force is generally large to hold the hinge plates against unwanted separation or opening of the rings. As a result, when the hinge plates move through the co-planar position, they do so with a strong snapping movement. This snaps the ring members together when they close and snaps them apart when they open. When the ring members close, there is a concern that they may rapidly snap together with a force that might cause fingers to be pinched in the ring members.
The housing spring force can also make it difficult to move the hinge plates through the co-planar position. As a result, it may be hard for an operator to open or close the ring members. In addition, the housing may begin to permanently deform over time because of the repeated deformation when pivoting the hinge plates. This may reduce the housing's ability to uniformly hold the ring members together when they are closed and may allow gaps to form between the closed ring members. Pages may escape from the closed rings. Furthermore, in may of these mechanisms the ring members do not positively lock together when they are closed. So if the mechanism is accidentally dropped, the ring members may unintentionally open and allow pages to fall out.
Accordingly, there is a need for a ring binder mechanism in which rings are easy to open and close, in which the ring members of the rings do not strongly snap together, and in which the ring members lock together to securely retain pages on the closed rings.
This invention relates generally to a ring binder mechanism for retaining loose-leaf pages. The mechanism comprises a housing and hinge plates supported by the housing for pivoting motion about a pivot axis. The mechanism also includes rings for holding the loose-leaf pages, and each ring includes a first ring member and a second ring member. The first ring member is mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate relative to the second ring member between a closed and open position. In the closed position, the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other. In the open position, the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings. The mechanism further includes a control structure, which comprises a lever pivotally mounted on the housing, a travel bar operatively connected to the lever, and one link pivotally connected to the housing and to the travel bar. The link captures the hinge plates for use in driving pivoting motion of the hinge plates toward the closed positions of the ring members and toward the open positions of the ring members. The lever is pivotable on the housing to move the travel bar generally lengthwise of the housing and thereby pivot the links for use in controlling the pivoting motion of the hinge plates.
In another aspect, the ring binder mechanism includes a control structure supported by the housing and comprising a lever, a travel bar, at least one link, and a spring engaging the lever. The travel bar is operatively connected to the travel bar, and the link is connected to the travel bar and the housing. The control structure is movable relative to the housing between a first position corresponding to the closed positions of the ring members and a second position. The link is engageable with at least one of the hinge plates in the first position for blocking the hinge plates from pivoting to move the ring members to their open positions. This locks the ring members in their closed position. The spring is oriented to bias the lever toward the first position of the control structure.
Other features of the invention will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the views of the drawings.
Referring to the drawings,
As shown in
The housing 11 is shaped as an elongated rectangle with a uniform, roughly arch-shaped cross section, having at its center a plateau 19. A first longitudinal end of the housing 11 is generally open while an opposing longitudinal end is closed. Four openings 21a-d are provided in the housing plateau 19 between the housing's longitudinal ends. First and fourth openings 21a, 21d are circular in shape and located adjacent respective longitudinal ends of the housing 11. Second and third openings 21b, 21c are rectangular in shape with each opening located inward of a respective one of the circular openings 21a, 21d. A bent under rim 23 is formed along each longitudinal edge margin of the housing 11, and three uniformly spaced openings, each designated by reference numeral 25, are formed in each rim. Pairs of tabs (each tab being designated by reference numeral 27) project upward from the plateau 19 of the housing 11 at the open end of the housing and at each rectangular opening 21b, 21c. The function of the tabs 27 will be described hereinafter. It is envisioned that the housing 11 is made of metal, but it may be made of other material that is sufficiently rigid to provide a stable mount for components of the mechanism 1 while being sufficiently resilient to function as a spring. It is also envisioned that the housing tabs 27 are integral with the housing 11, but they may be formed separately from the housing and attached thereto without departing from the scope of the invention. Mechanisms having housings of other shapes, including irregular shapes, or housings that are integral with a file or notebook do not depart from the scope of this invention.
As best shown in
As shown in
As shown in
The travel bar 35 is elongate and generally inverted channel shaped, and longitudinal ends of the travel bar are open. The travel bar 35 includes two openings 49a, 49b between its longitudinal ends. A first opening 49a is adjacent a first longitudinal end of the travel bar 35 and is oval in shape. This oval opening 49a extends the full width of the travel bar 35 between longitudinal edge margins of the travel bar. A second opening 49b is spaced away from the oval opening 49a toward a longitudinal center of the travel bar 35. The second opening 49b is rectangular in shape and also extends the full width of the travel bar 35 between longitudinal edge margins of the travel bar. Pairs of tabs (each tab of each pair is designated by reference numeral 51) are located at each open end of the travel bar 35. Each tab 51 of each pair is located at the longitudinal edge margin of the travel bar 35 and extends longitudinally outward from the travel bar in alignment with the opposite tab of the pair such that openings in the tabs align.
The two links 37a, 37b of the control structure 17 are substantially identical. A first link 37a will be described with it understood that a description of a second link 37b would be the same. The first link 37a includes a tongue 53, which has an enlarged head 55, and a body 57. The tongue 53 extends away from the body 57 at a pair of shoulders 59 of the body. The link 37a also includes two channel shaped barrels 61a, 61b that extend generally transverse of the link. A first barrel 61a is located adjacent a top part of the link body 57 and a second barrel 61b is located below the first barrel near the shoulders 59 of the body. While in the illustrated ring mechanism 1 the link 37a comprises the tongue 53 and body 57 formed as one piece, a ring mechanism having a link with a tongue and body formed separate from each other and subsequently joined to form the link does not depart from the scope of this invention.
The assembled ring binder mechanism 1 will now be described with reference to
As best shown in
Ring members 31 of each ring 15 are mounted on opposite ones of the two hinge plates 13 (
As shown in
The travel bar 35 is disposed within the housing 11 behind the housing plateau 19 and above the interconnected hinge plates 13. It extends away from the lever 33 lengthwise of the housing 11 and parallel to a longitudinal axis of the housing. The tabs 51 at the open end of the travel bar 35 nearest the lever 33 connect with the lower tabs 45 of the lever neck 41 via a hinge pin 63 to connect the travel bar to the lever. The arcuate opening 49a of the travel bar 35 is generally vertically aligned with the circular first opening 21a of the housing plateau 19 and the arcuate first cutout opening 29a of the interconnected hinge plates 13. The rectangular opening 49b of the travel bar 35 is generally vertically aligned with the rectangular second opening 21b of the housing plateau 19 and the rectangular second cutout opening 29b of the hinge plates 13. The open end of the travel bar 35 furthest from the lever 33 is generally vertically aligned with the rectangular third opening 21c of the housing plateau 19 and the rectangular third cutout opening 29c of the hinge plates 13 (not shown).
As best shown in
The tongue 53 of each link 37a, 37b (only the first link 37a is shown in
As shown in
Operation of the ring binder mechanism 1 between the closed and locked position and an open position will now be described.
To open the ring mechanism 1, an operator applies force to the lever head 39 (and cap 47) and progressively pivots the lever 33 outward and downward. The lever 33 pivots about the hinge pin 63 mounting it on the housing 11 and simultaneously pushes the travel bar 35 (via the pivotal connection between the lever and travel bar) away from the lever. This causes the travel bar 35 to pivotally move the links 37a, 37b away from the lever 33 and pivots the links about their connection point with the housing 11. The links 37a, 37b rotate (pivot) from their over-center, locking position, through a vertical position, and toward an open position (
As the operator continues to pivot the lever 33, the travel bar 35 continues to move away from the lever and further pivots each link 37a, 37b. The enlarged head 39 of each link 37a, 37b begins to push the hinge plates 13 to pivot them upward toward their co-planar position. Once the plates 13 pass through the co-planar position, the spring force of the housing 11 causes them to pivot fully upward and open the ring members 31. This is shown in
To close the open ring members 31 and return the ring mechanism 1 to the locked position, the operator may either pivot the lever 33 upward and inward or may manually push the ring members together. Pivoting the lever 33 pulls the travel bar 35 toward the lever. This correspondingly pivots the links 37a, 37b back toward the lever 33. The link shoulders 59 push down on the hinge plates 13 and cause the plates to pivot downward. As soon as the hinge plates 13 pass through the co-planar position, the housing spring force biases them to pivot fully downward and close the ring members 31. As this occurs, the operator continues to pivot the lever 33 to pull the travel bar 35 and links 37a, 37b back to their locked position (
Closing the ring members 31 by manually pushing them together similarly pivots the hinge plates 13 downward and through their co-planar position. The downward movement of the hinge plates 13 cams the links 37a, 37b and causes them to pivot slightly toward the lever 33. This pushes the travel bar 35 toward the lever 33 and causes the lever to being pivoting upward and inward. At this time, the ring members 31 are closed but the ring mechanism 1 is not locked. The operator can lock the mechanism 1 by pivoting the lever 33 to its full vertical position, which pulls the travel bar 35 and links 37a, 37b to their locked position in which the links are over-center.
A benefit of the ring mechanism 1 of the invention is that the links 37a, 37b in cooperation with the travel bar 35 and the post 64a firmly block the hinge plates 13 from pivoting upward toward the housing 11 and thus securely holds the ring members 31 closed. Therefore, the housing spring force can be significantly reduced as it is no longer required to hold the ring members 231 closed. Another benefit of the ring mechanism 1 of the invention is that the links 37a, 37b are uniquely connected to the housing 11 and travel bar 35 for pivotal movement to operate the hinge plates 13. This arrangement provides increased leverage to the links 37a, 37b to bias the hinge plates 13 to pivot upward and downward.
As shown in
Operation of the ring mechanism 101 between the closed (
When the ring mechanism 101 is open (
To move the ring mechanism 101 back to its closed position, either the lever 133 can be pivoted upward and inward or the ring members 131 can be manually pushed together. As described for the first embodiment of
As shown in
The assembled ring mechanism 201 is shown in
To move the mechanism 201 to its open position (
As the operator continues to pivot the lever 233 to open the mechanism 201, the links 237a, 237b continue to pivot away from the lever 233. This allows the hinge plates 213 to pivot fully upward through their co-planar position to open the ring members 231. In this open position of the ring mechanism 201, the links 237a, 237b no longer block the hinge plates' pivoting motion. The housing's spring force holds the hinge plates 213 in their upwardly hinged position with the ring members 231 open. The operator may let go of the lever 233 to load or remove pages from the mechanism 201. As in the second embodiment of
To close the ring members 231 and return the ring mechanism 201 to its closed and locked position, the operator either pivots the lever 233 inward and upward or pushes the ring members 231 together. As in the previous embodiments, both of these actions move the hinge plates 213 downward. In this embodiment, as in the second embodiment, as soon as the hinge plates 213 pass through their co-planar position (and the housing spring force biases them to pivot fully downward to close the ring members 231), the torsion spring 265 drives the lever 233 to pivot to its full vertical position. This automatically pulls the travel bar 235 toward the lever 233 and pivots the links 237a, 237b to their over-center, locked position. Thus, the ring mechanism 201 is automatically locked when the ring members 231 close.
It is to be understood that the components of the ring binder mechanism of the invention are made of a suitable rigid material, such as a metal (e.g., steel). Mechanisms with components made of non-metallic materials, specifically including a plastic, do not depart from the scope of this invention.
When introducing elements of this invention or the embodiments thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Moreover, the use of “up” and “down” and variations of these terms is made for convenience, but does not require any particular orientation of the components.
As various changes could be made in the above without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
566717 | Krah | Aug 1896 | A |
651254 | Krah | Jun 1900 | A |
683019 | Buchanan | Sep 1901 | A |
790382 | McBride | May 1905 | A |
854074 | Bryant | May 1907 | A |
857377 | Baker | Jun 1907 | A |
974831 | Scherzinger | Nov 1910 | A |
1011391 | Sturgis | Dec 1911 | A |
1163179 | Schade, Jr. | Dec 1915 | A |
1168260 | Albrecht | Jan 1916 | A |
1398034 | Mero | Nov 1921 | A |
1398388 | Murphy | Nov 1921 | A |
1733548 | Martin | Oct 1929 | A |
1733894 | Martin | Oct 1929 | A |
1787957 | Schade | Jan 1931 | A |
1822669 | Schade | Sep 1931 | A |
1857291 | Trussell | May 1932 | A |
1953981 | Trussell | Apr 1934 | A |
1991362 | Krag | Feb 1935 | A |
1996463 | Dawson et al. | Apr 1935 | A |
2004570 | Dawson | Jun 1935 | A |
2013416 | McClure | Sep 1935 | A |
2024461 | Lotter | Dec 1935 | A |
2067846 | Cooper | Jan 1937 | A |
2075766 | Rand | Mar 1937 | A |
2089211 | Krag | Aug 1937 | A |
2096944 | Unger et al. | Oct 1937 | A |
2103307 | Unger | Dec 1937 | A |
2105235 | Schade | Jan 1938 | A |
2158056 | Cruzan | May 1939 | A |
2179627 | Handler | Nov 1939 | A |
2204918 | Trussell | Jun 1940 | A |
2218105 | Griffin | Oct 1940 | A |
2236321 | Ostrander | Mar 1941 | A |
2239062 | Tallmadge | Apr 1941 | A |
2239121 | St. Louis et al. | Apr 1941 | A |
2251878 | Hanna | Aug 1941 | A |
2252422 | Unger | Aug 1941 | A |
2260929 | Bloore | Oct 1941 | A |
2288189 | Guinane | Jun 1942 | A |
2304716 | Supin | Dec 1942 | A |
2311492 | Unger | Feb 1943 | A |
2322595 | Schade | Jun 1943 | A |
2338011 | Schade | Dec 1943 | A |
2421799 | Martin | Jun 1947 | A |
2528866 | Dawson, Jr. | Nov 1950 | A |
2543866 | Panfil | Mar 1951 | A |
2552076 | Wedge | May 1951 | A |
2612169 | Segal | Sep 1952 | A |
2789561 | Bonn | Apr 1957 | A |
2865377 | Schroer et al. | Dec 1958 | A |
2871711 | Stark | Feb 1959 | A |
2891553 | Acton | Jun 1959 | A |
2894513 | Gempe | Jul 1959 | A |
3077888 | Thieme | Feb 1963 | A |
3098489 | Vernon | Jul 1963 | A |
3098490 | Wance | Jul 1963 | A |
3101719 | Vernon | Aug 1963 | A |
3104667 | Mintz | Sep 1963 | A |
3149636 | Rankin | Sep 1964 | A |
3190293 | Schneider et al. | Jun 1965 | A |
3205894 | Rankin | Sep 1965 | A |
3205895 | Johnson | Sep 1965 | A |
3255759 | Dennis | Jun 1966 | A |
3348550 | Wolf et al. | Oct 1967 | A |
3718402 | Schade | Feb 1973 | A |
3748051 | Frank | Jul 1973 | A |
3884586 | Michaelis et al. | May 1975 | A |
3954343 | Thomsen | May 1976 | A |
3993374 | Schudy et al. | Nov 1976 | A |
4127340 | Almgren | Nov 1978 | A |
4130368 | Jacoby et al. | Dec 1978 | A |
4352582 | Eliasson | Oct 1982 | A |
4486112 | Cummins | Dec 1984 | A |
4522526 | Lozfau | Jun 1985 | A |
4566817 | Barrett, Jr. | Jan 1986 | A |
4571108 | Vogl | Feb 1986 | A |
4696595 | Pinkney | Sep 1987 | A |
4798491 | Lässle | Jan 1989 | A |
4813803 | Gross | Mar 1989 | A |
4815882 | Ohminato | Mar 1989 | A |
4886390 | Silence | Dec 1989 | A |
4919557 | Podosek | Apr 1990 | A |
5067840 | Cooper | Nov 1991 | A |
5116157 | Gillum et al. | May 1992 | A |
5135323 | Pinheiro | Aug 1992 | A |
5180247 | Yu | Jan 1993 | A |
5255991 | Sparkes | Oct 1993 | A |
5286128 | Gillum | Feb 1994 | A |
5332327 | Gillum | Jul 1994 | A |
5346325 | Yamanoi | Sep 1994 | A |
5354142 | Yu | Oct 1994 | A |
5368407 | Law | Nov 1994 | A |
5378073 | Law | Jan 1995 | A |
5393155 | Ng | Feb 1995 | A |
5393156 | Mullin et al. | Feb 1995 | A |
5476335 | Whaley | Dec 1995 | A |
5524997 | von Rohrscheidt | Jun 1996 | A |
5577852 | To | Nov 1996 | A |
5651628 | Bankes | Jul 1997 | A |
5660490 | Warrington | Aug 1997 | A |
5692847 | Zane et al. | Dec 1997 | A |
5692848 | Wada | Dec 1997 | A |
5718529 | Chan | Feb 1998 | A |
5782569 | Mullin et al. | Jul 1998 | A |
5788392 | Cheung | Aug 1998 | A |
5807006 | Cheung | Sep 1998 | A |
5810499 | Law | Sep 1998 | A |
5816729 | Whaley | Oct 1998 | A |
5836709 | Cheung | Nov 1998 | A |
5868513 | Law | Feb 1999 | A |
5879097 | Cheng | Mar 1999 | A |
5882135 | Ko | Mar 1999 | A |
5895164 | Wu | Apr 1999 | A |
5924811 | To | Jul 1999 | A |
5957611 | Whaley | Sep 1999 | A |
5975785 | Chan | Nov 1999 | A |
6036394 | Cheng | Mar 2000 | A |
6142697 | Williams | Nov 2000 | A |
6146042 | To | Nov 2000 | A |
6155737 | Whaley | Dec 2000 | A |
6203229 | Coerver | Mar 2001 | B1 |
6206601 | Ko | Mar 2001 | B1 |
6217247 | Ng | Apr 2001 | B1 |
6270279 | Whaley | Aug 2001 | B1 |
6276862 | Snyder et al. | Aug 2001 | B1 |
6293722 | Holbrook et al. | Sep 2001 | B1 |
6364558 | To | Apr 2002 | B1 |
6371678 | Chizmar | Apr 2002 | B1 |
6467984 | To | Oct 2002 | B1 |
6474897 | To | Nov 2002 | B1 |
6533486 | To | Mar 2003 | B1 |
6749357 | Cheng | Jun 2004 | B2 |
6758621 | To | Jul 2004 | B2 |
6821045 | Whaley | Nov 2004 | B2 |
6840695 | Horn | Jan 2005 | B2 |
6916134 | Wong | Jul 2005 | B2 |
7296946 | Cheng | Nov 2007 | B2 |
20020122687 | Horn | Sep 2002 | A1 |
20030044221 | To | Mar 2003 | A1 |
20030103797 | Cheng | Jun 2003 | A1 |
20030103798 | Cheng et al. | Jun 2003 | A1 |
20030123923 | Koike et al. | Jul 2003 | A1 |
20050013654 | Cheng et al. | Jan 2005 | A1 |
20050201817 | Cheng | Sep 2005 | A1 |
20050201818 | Cheng | Sep 2005 | A1 |
20050201819 | Cheng | Sep 2005 | A1 |
20050201820 | Ng | Sep 2005 | A1 |
20050207826 | Cheng | Sep 2005 | A1 |
20050214064 | Ng et al. | Sep 2005 | A1 |
20050232689 | Cheng | Oct 2005 | A1 |
20060008318 | Ng | Jan 2006 | A1 |
20060056906 | Horn | Mar 2006 | A1 |
20060088365 | Whaley | Apr 2006 | A1 |
20060147253 | Cheng | Jul 2006 | A1 |
20060147254 | Cheng | Jul 2006 | A1 |
20060147255 | Cheng | Jul 2006 | A1 |
20060153628 | Tanaka | Jul 2006 | A1 |
20060153629 | Cheng | Jul 2006 | A1 |
20060216107 | Lin | Sep 2006 | A1 |
20060228164 | Horn | Oct 2006 | A1 |
20060251467 | Cheng | Nov 2006 | A1 |
20060251468 | Cheng | Nov 2006 | A1 |
20070086836 | Cheng | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
10119121 | Oct 2001 | DE |
1316438 | Apr 2003 | EP |
1323545 | Jul 2003 | EP |
1431065 | Jun 2004 | EP |
1 336 765 | Jul 1962 | FR |
1336765 | Sep 1963 | FR |
1 346 864 | Dec 1963 | FR |
1346864 | Dec 1963 | FR |
2221924 | Oct 1974 | FR |
2 238 332 | Feb 1975 | FR |
2238332 | Feb 1975 | FR |
868724 | May 1961 | GB |
906279 | Sep 1962 | GB |
952536 | Mar 1964 | GB |
2231536 | Nov 1990 | GB |
2251215 | Jul 1992 | GB |
2275023 | Aug 1994 | GB |
2292343 | Feb 1996 | GB |
2387815 | Oct 2003 | GB |
59-79379 | May 1984 | JP |
61-18880 | Feb 1986 | JP |
01299095 | Dec 1989 | JP |
1299095 | Dec 1989 | JP |
2034289 | Mar 1990 | JP |
4-120085 | Oct 1992 | JP |
2004098417 | Apr 2004 | JP |
0119620 | Mar 2001 | WO |
WO 0119620 | Mar 2001 | WO |
0181099 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050201817 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
60553231 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10870168 | Jun 2004 | US |
Child | 11080700 | US |