This invention relates to binders for holding loose leaf pages, and in particular to an improved mechanism for opening and closing binders.
A ring binder retains loose leaf pages, such as hole-punched papers, in a file or notebook. It features ring members for retaining the papers which may be selectively opened to add or remove papers, or closed to retain papers while allowing them to be moved along the ring members. Levers are typically provided on both ends of the binder for moving the ring members between the open and closed positions.
One drawback to ring binders of the prior art is that when ring members are being closed, they snap shut with a strong magnitude of force which can cause injury. Further, many ring binders of the prior art have ring members which are not lockable in the closed position, thereby being vulnerable to inadvertently opening when heavily loaded with loose leaf papers. Also, the clamping force within each ring is not uniform with the clamping force in other rings, causing uneven movement and potentially resulting in gaps on closed rings.
Reference is made to the following co-assigned U.S. Patents for background regarding ring binder mechanisms:
Among the several objects and features of the present invention may be noted the provision of a ring binder particularly for use in a loose-leaf binder having improved mechanism for the opening and closing of the ring binder rings; the provision of such a ring binder wherein the mechanism acts to securely lock the rings in closed position and is readily manipulable to open the rings; the provision of such a ring binder which inhibits injury to operators; the provision of such a ring binder which provides uniform clamping force in each ring; and the provision of such a ring binder which is serviceable and reliable in operation and of reasonably economical construction.
In general, the ring binder of this invention comprises an elongate base having opposite sides and ends and rings spaced longitudinally of the base. Each ring comprises a pair of ring segments, one segment of each pair being mounted on the base for swinging movement about an axis extending lengthwise of the base between a ring-closing position and a ring-opening position. A shaft is mounted on the base for rotation on an axis extending lengthwise of the base, said shaft having at least one offset. Further, the ring binder has at least one link extending from the offset to the swinging ring segments, whereby on rotation of the shaft and offset in one direction the swinging ring segments swing from their ring-closing position to their ring-opening position and on rotation of the shaft and offset in the opposite direction the swinging ring segments swing from their ring-opening position to their ring-closing position.
In another aspect, a ring binder of the present invention is particularly for use in a loose-leaf binder. The ring binder comprises an elongate base having opposite sides and ends, and a flap extending along one side of the base hinged to the base for swinging movement about an axis extending along said one side between a raised and a lowered position. Rings each comprise a ring segment fixed to the base and a mating ring segment secured to the flap. The mating ring segments are swung away from the fixed ring segments when the flap is down in lowered position so that the rings are then open. The mating ring segments are closed on the fixed ring segments when the flap is up in raised position so that the rings are then closed. A shaft is mounted on the base for rotation on an axis extending longitudinally of the base, the shaft having at least one offset. A link extends from the offset to the flap for swinging the flap.
In yet another aspect, a ring binder of the present invention is particularly for use in a loose-leaf binder. The ring binder comprises an elongate sheet metal plate constituting the base of the ring binder having opposite sides and ends. An elongate sheet metal flap extends along one side of the plate hinged thereto for swinging movement about an axis extending along said one side for swinging movement between a raised position relative to the plate and a lowered position generally coplanar with the plate. Rings each comprise a ring segment fixed to the plate and a mating ring segment secured to the flap. The mating ring segments are swung away from the fixed ring segments when the flap is at the lowered position so that the rings are open. The mating ring segments are closed on the fixed ring segments when the flap is at the raised position so that the rings are then closed. The flap is hinged to the plate by at least one spring wire hinge on the bottom of the plate and flap. The spring wire hinge tends to bias the flap down to its lowered position. A crankshaft is journalled on the base by clips struck up from the base and has at least one crank and a crank arm at an end thereof for turning the crankshaft. At least one link extends from said at least one crank to the flap. The link is pivotally connected to the flap and has a hook formation for hooking around said at least one crank.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring to the drawings and especially to
The base 3 is generally rectangular in shape with a low profile, preferably stamped from sheet metal. The base 3 has holes 75 for receiving fasteners (not shown) for fastening the ring binder 1 to the loose-leaf binder B as shown in
A sheet metal flap 23 extends along side 5 of the base plate 3 hinged to the base as described hereinafter for swinging movement about axis A1 extending along side 5 for swinging movement between a raised position relative to the base (see
The ring binder 1, as illustrated, is a three-ring binder, having a ring R1 adjacent end 9 of the base, a ring R2 generally in the middle of the base, and a ring R3 adjacent end 11. Rings R1 and R3 may be referred to as the end rings; R2 as the central ring. Each ring R1, R2, R3 comprises a pair of ring segments 13 and 15 (the same for all the rings). As shown, each ring segment 13 is a generally concavo-convex segment having an upper end 13a and a lower end 13b (FIG. 4). Each ring segment 15 has a relatively long linear upright component 15a having an upper end 15b and a lower end 15c extending laterally therefrom. One segment of each pair 13, 15, namely segment 13, is mounted for swinging movement about axis A1 extending lengthwise of the base between a ring-closing position (see
Each ring segment 15 has its lower end 15c secured as by welding on the base 3, its linear component 15a extending upwardly therefrom. The ring segments 15 are therefore in generally fixed position relative to the base 3. Each ring segment 13 (which mates with a segment 15) has its lower end 13b secured as by welding on the flap 23 and extends upwardly therefrom. The ring segments 13 are swung away from the fixed ring segments 15 when the flap 23 is down in the lowered position so that the rings are then open (see FIGS. 13-16). The ring segments 13 are closed on the fixed ring segments 15 when the flap 23 is up in raised position so that the rings R1, R2, R3 are then closed.
A shaft designated 17 in its entirety is mounted on the base 3 for rotation on an axis A2 extending lengthwise of the base (parallel to axis A1). This shaft is broadly referred to as having at least one offset 19 (FIG. 18), such that the shaft may be denoted a crankshaft, the offsets 19 constituting cranks. The ring binder 1 has at least one link 21 extending from the offset 19 to the swinging ring segments 13 whereby on rotation of the shaft 17 and offset in one direction (counterclockwise in
The hinging of the flap 23 on the base 3 is effected by having tabs 25 formed on edge 27 of the flap 23 contiguous to edge 5 of the base 3 (see particularly
The flap 23 is held in pivoted assembly with the base plate 3 by a pair of U-shaped spring wire hinge connectors, each designated 43 in its entirety (FIGS. 3 and 7), on the bottom of the base plate 3 and flap 23. The cross-wire 45 of each spring wire connector 43 is held in place by clips 47 struck out of and down from the flap 23, and the arms 49 of the connectors are held in place by clips 51 struck out of and down from the base plate 3. Ends 53 of the arms are bent around these clips 51. The arms 49 are generally straight when the flap 23 is down; the portion of each connector underlying the flap bends up springwise when the flap swings up. Arms 49 then tend to straighten out, i.e., each connector 43 tends to revert to being flat, and the connectors 43 then impose a downward bias on the flap. The spring wire connectors 43 may be held in place other than by the clips 47 and 51, such as by inserting the cross-wire 45 or arms 49 through a slot (not shown) in the base or flap and bending it around an edge of that slot. The ring binder 1 may have another type of spring, such as a leaf spring or coil spring located above or adjacent to the base 3, or may have no spring and therefore no downward bias, without departing from the scope of this invention.
The shaft 17 is mounted for rotation on axis A2 on and relative to the base 3 by being journalled in bearings 55 constituted by tabs struck up from the base 3 and circularized, there being such bearings for rods 17a, b, c, d making up the shaft adjacent the ends of the rods adjacent the offsets 19. The construction of the bearings 55 and the location of the shaft 17 on the top surface of the base 3 provides for economical manufacture and assembly of the ring binder 1.
Each link 21 extends from one of the offsets or cranks 19 to the flap 23. Each link 21 comprises a generally flat strip of substantial width (in direction lengthwise of the base 3), the width generally corresponding to a size of the corresponding offset 19 for effective engagement by the offset. An advantage of the relatively wide strip is a broader distribution of force on the shaft 17 and flap 23 to avoid deflections or warp. However, each link could comprise a rod or thin member without departing from the scope of this invention. Each link 21 has stiffening ribs 57 extending lengthwise thereof. One end 59 of each link is bent to extend so as to be adapted to hook around the respective offset or crank 19 (see particularly FIG. 23). The other end of each link is slotted as indicated at 61 thereby forming it with two arms 63 straddling the respective ring segment 13, the ends 65 of the arms being hooked into slots 67 in the flap 23 forming rotatable connections with the flap. The base 3 is formed with stamped-down parts 69 forming cavities 71 accommodating the offsets 19. Preferably, the links 21 are formed of stamped sheet metal. If the links 21 are positioned at an alternate spacing other than at the rings (not shown), each link may be free from slot 61, with a generally solid construction along its length, because there is no need to straddle a ring segment.
As shown, the shaft 17 has a crank arm 73 extending laterally therefrom at end 9 of the base plate 3 swingable manually from the retracted ring-closing position in which it is shown in
With the crank arm 73 in the angular position shown in
On swinging the crank arm 73 upward (counterclockwise as viewed in FIG. 4), as it generally attains the intermediate position in which it is shown in
On swinging the crank arm 73 back from its position of
The ring binder 1 is readily manipulable between open and closed positions. A strong clamping force is not being applied while the rings R1, R2, R3 move between the locked, unlocked (intermediate), and open positions. Unlike many binders of the prior art, there is no significant tension, such as in hinge plates, tending to close the rings. Accordingly, the force is relatively less when the ring members are moving. That permits the ring members to be easily opened or closed using less strength by an operator. It also inhibits injury should the operator inadvertently place a finger or hand in position between ring members while they are being clamped together.
The binder 1 of the present invention effectively retains loose leaf pages. The mechanism does not snap shut with a strong force which might injure a person who inadvertently places a finger or hand between ring members as they clamp together. The rings R1, R2, R3 may be moved by application of force at only one crank arm 73, and the magnitude of force is less than on opening and closing ring binders of the prior art. The mechanism distributes force generally uniformly to the three rings. The binder may be controllably placed in a locked position for securing loose leaf sheets and inhibiting inadvertent opening.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
When introducing elements of the present invention or the preferred embodiments thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Number | Name | Date | Kind |
---|---|---|---|
819368 | Nelson | May 1906 | A |
1278267 | Whitlock | Sep 1918 | A |
1299276 | Whitlock | Apr 1919 | A |
1456036 | Nissen | May 1923 | A |
1709955 | Schade | Apr 1929 | A |
1905418 | Meves | Apr 1933 | A |
1929614 | Tannehill et al. | Oct 1933 | A |
2081372 | Thomas | May 1937 | A |
2158056 | Cruzan | May 1939 | A |
2265822 | Spalding | Dec 1941 | A |
2871711 | Stark | Feb 1959 | A |
2888934 | Segal | Jun 1959 | A |
3159411 | McKowen | Dec 1964 | A |
3175847 | McKowen | Mar 1965 | A |
3255759 | Dennis | Jun 1966 | A |
3333592 | Huffaker | Aug 1967 | A |
3809485 | Beyer | May 1974 | A |
3950107 | Seaborn | Apr 1976 | A |
4295747 | Errichiello | Oct 1981 | A |
4522526 | Lozfau et al. | Jun 1985 | A |
4697945 | Geiger | Oct 1987 | A |
4722628 | Rager | Feb 1988 | A |
4815882 | Ohminato | Mar 1989 | A |
4830528 | Handler | May 1989 | A |
4935998 | Frazier et al. | Jun 1990 | A |
5035526 | Cooper et al. | Jul 1991 | A |
5100253 | Cooper | Mar 1992 | A |
5106223 | Kraus | Apr 1992 | A |
5160209 | Schuessler | Nov 1992 | A |
5180247 | Yu | Jan 1993 | A |
5265967 | Han | Nov 1993 | A |
5269616 | O'Neill | Dec 1993 | A |
5286128 | Gillum | Feb 1994 | A |
5354142 | Yu | Oct 1994 | A |
5368407 | Law | Nov 1994 | A |
5378073 | Law | Jan 1995 | A |
5393155 | Ng | Feb 1995 | A |
5476335 | Whaley | Dec 1995 | A |
5577852 | To | Nov 1996 | A |
5755513 | To | May 1998 | A |
5842807 | To | Dec 1998 | A |
5879097 | Cheng | Mar 1999 | A |
5975784 | Whaley | Nov 1999 | A |
6019538 | Whaley | Feb 2000 | A |
6033144 | Ng et al. | Mar 2000 | A |
6168339 | To | Jan 2001 | B1 |
20040013464 | Cheng | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
196 02 813 | Aug 1996 | DE |
1382464 | Jan 2004 | EP |
954 417 | Apr 1964 | GB |
1 111 435 | Apr 1968 | GB |
1 484 908 | Sep 1977 | GB |
2004-50833 | Feb 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20040013464 A1 | Jan 2004 | US |