Claims
- 1. A ring-gap nozzle assembly adapted to fit into a bore extending through the bottom plate of a fluidized bed and to distribute a fluid over the plate, the nozzle assembly comprising upper and lower coaxial, dish-shaped pressed parts interconnected in nesting relationship by a central connecting member carried by a clamp provided on the lower part, the lower part fitting the bore in the bottom plate and having an outturned flange adapted to abut the lower side of the bottom plate, and the upper part having a larger diameter than that bore, whereby movement of the assembly in opposite directions axially of the bore is positively limited by contact of the upper part and the flange with the upper and lower sides, respectively, of the bottom plate, the pressed parts and the connecting member bounding an annular flow path comprising an axial inlet portion through which fluid enters the assembly from below the bottom plate and a deflection space in which fluid delivered through the axial portion is deflected and directed radially outward to an unobstructed ring gap through which fluid exits from the assembly, at least that portion of the flow path including the deflection space having a flow area which decreases continuously in the direction of fluid flow, the upper and lower pressed parts being spaced apart by a sleeve surrounding the connecting members and arranged between the clamp and the upper pressed part, the sleeve being provided with an arched wall extending from the connection member to the inner wall of the upper pressed part and bounding a portion of the deflection space.
- 2. A ring-gap nozzle assembly adapted to fit into a bore extending through the bottom plate of a fluidized bed and to distribute a fluid over the plate, the nozzle assembly comprising upper and lower coaxial, dish-shaped pressed parts interconnected in nesting relationship and prevented from moving axially relatively to each other by a central connecting member carried by the lower part, the lower part fitting the bore in the bottom plate so as to be freely dispaceable vertically in the bore under the action of the applied fluid and having an outturned flange adapted to abut the lower side of the bottom plate, and the upper part having a larger diameter than the bore, whereby the assembly moves upward to the limit defined by contact between the flange and the lower side of the bottom plate, thereby open the ring gap, when fluid is applied, and the assembly descends to the limit defined by contact between the upper part and the upper side of the bottom plate, to thereby close the ring gap, when the application of fluid is terminated, the pressed parts and the connecting member bounding an annular flow path comprising an axial inlet portion through which fluid enters the assembly from below the bottom plate and a deflection space in which fluid delivered through the axial portion is deflected and directed radially outward to an unobstructed ring gap through which fluid exits from the assembly, at least that portion of the flow path including the deflection space having a flow area which decreases continuously in the direction of fluid flow.
- 3. A ring-gap nozzle assembly adapted to fit into a bore extending through the bottom plate of a fluidized bed and to distribute a fluid over the plate, the nozzle assembly comprising upper and lower coaxial, dish-shaped pressed parts interconnected in nesting relationship by a central connecting member carried by the lower part, the lower part fitting the bore in the bottom plate snugly in such a way as to be fixed in the bore and having an outturned flange adapted to abut the lower side of the bottom plate and the upper part having a larger diameter than that bore, the connecting member permitting free axial movement of the upper part relatively to the lower part under the action of the applied fluid between a first position in which the upper part contacts the upper side of the bottom plate, and thereby closes the ring gap, and a second position in which the upper part is spaced from the upper side of the bottom plate, and thereby opens the ring gap, the upper part moving to the second position when fluid is applied to the assembly and descending to the first position when the application of fluid is terminated, the pressed parts and connecting member bounding an annular flow path comprising an axial inlet portion through which fluid enters the assembly from below the bottom plate and a deflection space in which fluid delivered through the axial portion is deflected and directed radially outward to an unobstructed ring gap through which fluid exits from the assembly, at least that portion of the flow path including the deflection space having a flow area which decreases continuously in the direction of fluid flow.
Priority Claims (1)
| Number |
Date |
Country |
Kind |
| 5134/82 |
Aug 1982 |
CHX |
|
Parent Case Info
This application is a continuation of application Ser. No. 509,025, filed June 29, 1983, now abandoned.
US Referenced Citations (13)
Foreign Referenced Citations (2)
| Number |
Date |
Country |
| 1106820 |
Dec 1955 |
FRX |
| 1431763 |
Apr 1976 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
| Parent |
509025 |
Jun 1983 |
|