This invention relates to a ring gear used in an epicyclic gear train of a gas turbine engine.
Gas turbine engines typically employ an epicyclic gear train connected to the turbine section of the engine, which is used to drive the turbo fan. In a typical epicyclic gear train, a sun gear receives rotational input from a turbine shaft through a compressor shaft. A carrier supports intermediate gears that surround and mesh with the sun gear. A ring gear surrounds and meshes with the intermediate gears. In arrangements in which the carrier is fixed against rotation, the intermediate gears are referred to as “star” gears and the ring gear is coupled to an output shaft that supports the turbo fan.
Typically, the ring gear is connected to the turbo fan shaft using a spline ring. The spline ring is secured to a flange of the turbo fan shaft using circumferentially arranged bolts. The spline ring includes splines opposite the flange that supports a splined outer circumferential surface of the ring gear. The ring gear typically includes first and second portions that provide teeth facing in opposite directions, which mesh with complimentary oppositely facing teeth of the star gears.
An epicyclic gear train must share the load between the gears within the system. As a result, the splined connection between the ring gear and spline ring is subject to wear under high loads and deflection. Since the spline connection requires radial clearance, it is difficult to get a repeatable balance of the turbo fan assembly. Balance can also deteriorate over time with spline wear.
A disclosed example turbine engine according to a non-limiting exemplary embodiment includes an epicyclic gear train including an input shaft and a fan shaft rotatable about an axis, the fan shaft supporting fan blades. An epicyclic gear train is connected between the input shaft. The fan shaft, the epicyclic gear train includes a plurality of star gears, a carrier supporting the plurality of star gears, a sun gear that meshes with the plurality of star gears and a ring gear surrounding and meshing with the plurality of star gears such that the sun gear is rotatable in a first direction and the ring gear is rotatable in a second, opposite direction. The ring gear includes first and second portions that each have an inner periphery with teeth, the first and second portions including respective recesses facing one another to provide an internal annular cavity.
In a further embodiment of any of the foregoing examples, the teeth on the inner periphery of the ring gear are exclusive teeth on the ring gear.
In a further embodiment of any of the foregoing examples, the first and second portions of the ring gear have an outer circumferential surface opposite the teeth that provides a first thickness and a second, greater thickness axially inward from the first thickness.
In a further embodiment of any of the foregoing examples, the respective outer circumferential surfaces are generally S-shaped.
In a further embodiment of any of the foregoing examples, the first and second portions of the ring gear each have an outer circumferential surface opposite the teeth and a flange projecting radially outwardly from the respective outer circumferential surface, the flanges including respective grooves therein.
In a further embodiment of any of the foregoing examples, the respective grooves are radially elongated and each of the respective grooves opens to a terminal, radially outward end of the respective flange.
In a further embodiment of any of the foregoing examples, each of the respective grooves opens at a radially inner end to the internal annular cavity.
In a further embodiment of any of the foregoing examples, the internal annular cavity is axially elongated relative to a radial dimension of the internal annular cavity.
In a further embodiment of any of the foregoing examples, the first and second portions of the ring gear have an outer circumferential surface opposite the teeth, each of the respective outer circumferential surfaces including multiple inclined surfaces with regard to a central axis of the ring gear.
In a further embodiment of any of the foregoing examples, the multiple inclined surfaces includes a first inclined surface joined at one axial end thereof with a second inclined surface, the first inclined surface having a different slope than the second inclined surface.
In a further embodiment of any of the foregoing examples, each of the respective outer circumferential surfaces includes a non-sloped surface joined with the second inclined surface.
In a further embodiment of any of the foregoing examples, the first and second portions define a passage there between that opens at one radial end to the inner periphery and at an opposite radial end to a tip of a flange projecting radially outwardly from the outer circumferential surface.
In a further embodiment of any of the foregoing examples, the first and second portions of the ring gear have an outer circumferential surface opposite the teeth, the first and second portions each including a flange projecting radially outwardly from the outer circumferential surface, the first and second portions each being a monolithic structure.
In a further embodiment of any of the foregoing examples, the teeth on the first portion are angled in a first direction, and the teeth on the second portion are angled in a second direction opposite the first direction, a rotational direction of the ring gear forcing the first and second portions toward one another at the radial interface.
A portion of a gas turbine engine 10 is shown schematically in
In the example arrangement shown, the epicyclic gear train 22 is a star gear train. Referring to
Referring to
The first and second portions 40, 42 include flanges 51 that extend radially outward away from the teeth 43. The turbo fan shaft 20 includes a radially outwardly extending flange 70 that is secured to the flanges 51 by circumferentially arranged bolts 52 and nuts 54, which axially constrain and affix the turbo fan shaft 20 and ring gear 38 relative to one another. Thus, the spline ring is eliminated, which also reduces heat generated from windage and churning that resulted from the sharp edges and surface area of the splines. The turbo fan shaft 20 and ring gear 38 can be rotationally balanced with one another since radial movement resulting from the use of splines is eliminated. An oil baffle 68 is also secured to the flanges 51, 70 and balanced with the assembly.
Seals 56 having knife edges 58 are secured to the flanges 51, 70. The first and second portions 40, 42 have grooves 48 at the radial interface 45 that form a hole 50, which expels oil through the ring gear 38 to a gutter 60 that is secured to the carrier 26 with fasteners 61 (
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
The present disclosure is a continuation of U.S. patent application Ser. No. 11/504,220, filed Aug. 15, 2006.
Number | Name | Date | Kind |
---|---|---|---|
2684591 | Lundquist | Jul 1954 | A |
3160026 | Rosen | Dec 1964 | A |
3352178 | Lindgren et al. | Nov 1967 | A |
3722323 | Welch | Mar 1973 | A |
4583413 | Lack | Apr 1986 | A |
4896499 | Rice | Jan 1990 | A |
5081832 | Mowill | Jan 1992 | A |
5211541 | Fledderjohn et al. | May 1993 | A |
5302031 | Yuasa | Apr 1994 | A |
5391125 | Turra et al. | Feb 1995 | A |
5433674 | Sheridan et al. | Jul 1995 | A |
5466198 | McKibbin et al. | Nov 1995 | A |
5472383 | McKibbin | Dec 1995 | A |
6223616 | Sheridan | May 2001 | B1 |
6402654 | Lanzon et al. | Jun 2002 | B1 |
6530858 | Usoro et al. | Mar 2003 | B1 |
6669597 | Usoro et al. | Dec 2003 | B1 |
6732502 | Seda et al. | May 2004 | B2 |
7021042 | Law | Apr 2006 | B2 |
7591754 | Duong et al. | Sep 2009 | B2 |
7662059 | McCune | Feb 2010 | B2 |
7704178 | Sheridan et al. | Apr 2010 | B2 |
8074440 | Kohlenberg | Dec 2011 | B2 |
20020064327 | Toda et al. | May 2002 | A1 |
20040112041 | Law | Jun 2004 | A1 |
20050026745 | Mitrovic | Feb 2005 | A1 |
20080006018 | Sheridan et al. | Jan 2008 | A1 |
20080044276 | McCune et al. | Feb 2008 | A1 |
20080116009 | Sheridan et al. | May 2008 | A1 |
20090056306 | Suciu et al. | Mar 2009 | A1 |
20090090096 | Sheridan | Apr 2009 | A1 |
20090293278 | Duong et al. | Dec 2009 | A1 |
20090298640 | Duong et al. | Dec 2009 | A1 |
20110130246 | McCune | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
1114949 | Jul 2001 | EP |
1876338 | Jan 2008 | EP |
2224100 | Sep 2010 | EP |
2559913 | Feb 2013 | EP |
1357038 | Apr 1964 | FR |
46-36927 | Oct 1971 | JP |
5-248267 | Sep 1993 | JP |
9-317833 | Dec 1997 | JP |
2001-208146 | Aug 2001 | JP |
39-20031 | May 2007 | JP |
Entry |
---|
Japanese Office Action for Japanese Application No. 2007-202444, Aug. 3, 2010. |
European Search Report for EP Application No. 07253078.5, Dec. 5, 2007. |
European Search Report and Written Opinion for European Application No. EP 12 19 8136 completed on Aug. 21, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2012/071906 completed on Aug. 22, 2013. |
Dudley (“Gear Handbook: The design, Manufacture, and Application of Gears”, p. 3-15). |
Number | Date | Country | |
---|---|---|---|
20120189430 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11504220 | Aug 2006 | US |
Child | 13437442 | US |