The present invention relates generally to ring oscillators, and more particularly to a ring oscillator that can be used to optimize transistor characteristics.
Process variations can cause component characteristics on a semiconductor die to greatly vary. In particular, with complementary components, such as n-channel and p-channel metal oxide semiconductor field effect transistors (MOSFETs), one component type may have a process variation such that one of the conductivity type components may be at a fast operation, while the other component may be at a slow operation. In yet another case, both conductivity type components may be a fast operation. Lastly, both conductivity type component may be at a slow operation.
In this way, a circuit designer must design circuitry to operate at all of the four corners (e.g. fast p-channel, fast n-channel: fast p-channel, slow n-channel, slow p-channel, fast n-channel: and slow p-channel, slow n-channel). Such variations must be compensated by designing circuitry to operate with an adequate margin. By doing so, circuitry may not be designed for optimal speed and/or power.
In view of the above, it would be desirable to provide a way of compensating for process variations such that circuits may be optimized for speed and/or power regardless as to where within the four corners of process variation the particular device may fall.
Various embodiments of the present invention will now be described in detail with reference to a number of drawings. The embodiments show ring oscillator circuits and methods constructed with insulated gate field effect transistors (IGFETs), for example IGFETs of complementary conductivity types (n-channel and p-channel types). In particular, the embodiments may include implementations using IGFETs having substantially lower absolute value of threshold voltage VT, e.g. about 0.4 volts for n-channel IGFETs and about −0.4 volts for p-channel IGFETs as compared to about 0.6 volts and −0.6 volts, respectively. Such low threshold voltage IGFETs may comprise DDC technology, as but one example. DDC transistors are particularly advantageous for the embodiments herein based on the ability to reliably set threshold voltage with substantially reduced variation compared with conventional planar CMOS transistors. DDC transistors are also amenable to be designed with reduced threshold voltage, based upon, among other device design attributes, there being a heavily doped region and structure below a substantially undoped channel. Further discussion regarding transistor structure and methods of implementation is provided in U.S. Pat. No. 8,273,617 entitled ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME, which disclosure is incorporated by reference herein in its entirety.
Referring now to
Referring to
Ring oscillator 120 may provide an oscillator output OSCOUTP to a pad 122. Oscillator output OSCOUTP may have a frequency that varies substantially in response to process variations of the performance of p-channel IGFETs without substantial frequency variation in response to process variations of the performance of n-channel IGFETs.
Voltage generator 130 can provide a body bias potential Vbn to devices 150. Voltage generator 130 can include a programmable circuit 132. The body bias potential Vbn can have a predetermined potential that is essentially set in accordance to the programming state of the programmable circuit 132. Programmable circuit 132 can include programmable elements such as fuses, antifuses, or non-volatile memory cells, as just a few examples.
Voltage generator 140 can provide a body bias potential Vbp to devices 150. Voltage generator 140 can include a programmable circuit 142. The body bias potential Vbp can have a predetermined potential that is essentially set in accordance to the programming state of the programmable circuit 142. Programmable circuit 142 can include programmable elements such as fuses, antifuses, or non-volatile memory cells, as just a few examples.
Devices 150 can include n-channel IGFETs 152 and p-channel IGFETs 154. IGFETs (152 and 154) can include billions of IGFETs (152 and 154) integrally connected to form functional circuitry on an circuit block or die. N-channel IGFETs 152 can be one conductivity type and p-channel IGFETs 154 may be another conductivity type.
N-channel IGFETs 152 can receive body bias potential Vbn at a body bias terminal. The body bias potential Vbn may effect the operation of the n-channel IGFETs 152 based upon the magnitude of the body bias potential Vbn. As just one example, the threshold voltage (VT) of n-channel IGFETs 152 can change in response to changes in the body bias potential Vbn.
P-channel IGFETs 154 can receive body bias potential Vbp at a body bias terminal. The body bias potential Vbp may effect the operation of the p-channel IGFETs 152 based upon the magnitude of the body bias potential Vbp. As just one example, the threshold voltage (VT) of p-channel IGFETs 154 can change in response to changes in the body bias potential Vbp.
A method of setting the body bias potentials (Vbn and Vbp) will now be discussed with reference to
At step S210, the process may start by providing a wafer including the semiconductor circuit 100 on a probe apparatus. The probe apparatus may provide probe contacts to pads (112 and 122) at step S220. At step S230, a frequency of oscillator output OSCOUTN and oscillator output OSCOUTP may be determined. At step S240, a predetermined body bias potential Vbn may be selected based on the frequency of oscillator output OSCOUTN. At step S250, a predetermined body bias potential Vbp may be selected based on the frequency of oscillator output OSCOUTP. At step S260, programmable elements in programmable circuits (132 and 142) may be programmed such that voltage generators (130 and 140) may provide predetermined body bias potentials (Vbn and Vbp), respectively. At step S270 the wafer may be diced along scribe lines and the ring oscillator circuits (110 and 120) may be destroyed. The step of dicing may be performed with a mechanical saw blade or with a laser. Furthermore, the step of dicing may include partially cutting through scribe lines and then breaking the wafer apart using a tensile force by expanding a compliant layer upon which the wafer is bonded.
With proper selection of the body bias potentials (Vbn and Vbp), n-channel IGFETs 152 and p-channel IGFETs 154 may operate like “typical” IGFETs, even when the process variations provide IGFETs operating at one of the extreme corners. In this way, the design may be optimized for predetermined “typical” IGFET characteristics without the need to design for an adequate margin to allow for functionality at the extreme corner transistor characteristics based on process variations. By doing so, speed and power may be better optimized.
The semiconductor circuit 100 of
When semiconductor circuit 100 includes essentially worst case slow corner n-channel IGFETS 152, ring oscillator 110 may have frequency that is relatively low. When semiconductor circuit 100 includes essentially worst case fast corner n-channel IGFETS 152, ring oscillator 110 may have frequency that is relatively high. When semiconductor circuit 100 includes essentially normal or typical (as opposed to fast or slow) n-channel IGFETS 152, ring oscillator 110 may have frequency that is between the relatively low and relatively high frequencies.
In a semiconductor circuit 100 having normal or typical n-channel IGFETs 152, programmable circuits 132 in voltage generator 130 may be configured or programmed such that voltage generator may provide a body bias potential Vbn of about −0.3 volts. However, in the case of essentially worst case slow corner n-channel IGFETs 152, programmable circuits 132 in voltage generator 130 may be configured or programmed such that voltage generator may provide a body bias potential Vbn of about 0.0 volts. In the case of essentially worst case fast corner n-channel IGFETs 152, programmable circuits 132 in voltage generator 130 may be configured or programmed such that voltage generator may provide a body bias potential Vbn of about −0.6 volts. In the case of n-channel IGFETs 152 that are between the essentially worst case slow corner and normal or typical n-channel IGFETs, programmable circuits 132 in voltage generator 130 may be configured or programmed such that voltage generator 130 may provide a body bias potential Vbn of, for instance, between about 0.0 volts and about −0.3 volts. In the case of n-channel IGFETs 152 that are between the essentially worst case fast corner and normal or typical n-channel IGFETs, programmable circuits 132 in voltage generator 130 may be configured or programmed such that voltage generator 130 may provide a body bias potential Vbn of, for instance, between about −0.3 volts and about −0.6 volts.
In this way, n-channel IGFETs 152 that are slower than normal or typical may be sped up to behave like normal or typical n-channel IGFETs 152 by shifting the threshold voltage VT to a lower setting and n-channel IGFETs 152 that are faster than normal or typical may be slowed down to behave like normal or typical n-channel IGFETs 152 up by shifting the threshold voltage VT to a higher setting.
When semiconductor circuit 100 includes essentially worst case slow corner p-channel IGFETS 154, ring oscillator 120 may have frequency that is relatively low. When semiconductor circuit 100 includes essentially worst case fast corner p-channel IGFETS 154, ring oscillator 120 may have frequency that is relatively high. When semiconductor circuit 100 includes essentially normal or typical p-channel IGFETS 154, ring oscillator 120 may have frequency that is between the relatively low and relatively high frequencies.
In a semiconductor circuit 100 having normal or typical p-channel IGFETs 154, programmable circuits 142 in voltage generator 140 may be configured or programmed such that voltage generator may provide a body bias potential Vbp of, for instance, about a power supply potential plus 0.3 volts. However, in the case of essentially worst case slow corner p-channel IGFETs 154, programmable circuits 142 in voltage generator 140 may be configured or programmed such that voltage generator may provide a body bias potential Vbp of, for instance, about a power supply potential. In the case of essentially worst case fast corner p-channel IGFETs 154, programmable circuits 142 in voltage generator 140 may be configured or programmed such that voltage generator may provide a body bias potential Vbp of about, for instance, a power supply potential plus 0.6 volts. In the case of p-channel IGFETs 154 that are between the essentially worst case slow corner and normal or typical p-channel IGFETs, programmable circuits 142 in voltage generator 140 may be configured or programmed such that voltage generator may provide a body bias potential Vbp of, for instance, between about a power supply potential and a power supply potential plus 0.3 volts. In the case of p-channel IGFETs 154 that are between the essentially worst case fast corner and normal or typical p-channel IGFETs, programmable circuits 142 in voltage generator 140 may be configured or programmed such that voltage generator may provide a body bias potential Vbp of, for instance, between about a power supply potential plus 0.3 volts and about a power supply potential plus 0.6 volts.
In this way, p-channel IGFETs 154 that are slower than normal or typical may be sped up to behave like normal or typical p-channel IGFETs 154 by shifting the threshold voltage VT to a lower magnitude and p-channel IGFETs 154 that are faster than normal or typical may be slowed down to behave like normal or typical p-channel IGFETs 154 up by shifting the threshold voltage VT to a higher magnitude.
Referring now to
Semiconductor circuit 100 of
In one embodiment, the ring oscillators (110 and 120) and pads (112 and 122) of semiconductor circuit 100 in
Referring now to
Referring now to
Ring oscillator stage 500 may include a boot circuit 510 and an inverter 520. Boot circuit 510 may receive boot control signals (BC1n, BC2n, and BC3n) and may provide a booted output signal at a boot node NBOOT. Inverter 520 may receive the booted output signal at boot node NBOOT and an input signal IN-n as inputs and may provide an output signal OUT-n as an output.
Inverter 520 may include n-channel IGFETs (N522 and N524). N-channel IGFET N522 may have a source terminal connected to a ground potential, a drain terminal commonly connected to a source terminal of n-channel IGFET N524, and a gate connected to receive input signal IN-n. N-channel IGFET N524 may have a gate terminal connected to boot node NBOOT and a drain terminal connected to a power supply potential VDD. Each n-channel IGFET (N522 and N524) may have a body terminal connected to a body bias potential Vbn. N-channel IGFET N522 may have a channel region that is substantially greater drive strength than n-channel IGFET N524. As just one example, the width/length ratio of the gate region connected to the gate terminal of n-channel IGFET N522 may be about 8 times larger than the gate region of n-channel IGFET N524.
The operation of ring oscillator stage 500 will now be explained by referring to
At time t1, input signal IN-n may be at a power supply potential VDD. Because the gate terminal of n-channel IGFET N522 is receiving the power supply level, n-channel IGFET N522 may be turned on and output signal OUT-n may be driven to a ground potential VSS. Also at t1 boot control signal BC1n may transition from a low logic level (ground potential VSS) to a high logic level (power supply potential VDD). In response to the low to high transition of boot control signal BC1n, boot node NBOOT may transition from a logic low level to a power supply potential VDD. At this time, n-channel IGFET N524 may turn on. However, because n-channel IGFET N522 has a substantially greater drive strength than n-channel IGFET N524, output signal OUT-n may remain substantially at a ground potential VSS.
The ring oscillator stage 500 may be a low voltage ring oscillator stage in which power supply potential VDD may be below 1.0 volt. Power supply potential VDD may be about 0.6 volts, as one particular example.
At time t2, boot control signal BC2 may transition from a high logic level to a low logic level. In response to the high to low transition of boot control signal BC2n, boot node NBOOT may transition to a booted potential, substantially above power supply potential VDD. In this way, n-channel IGFET N524 may turn on harder. However, because n-channel IGFET N522 has a substantially greater drive strength than n-channel IGFET N524, output signal OUT-n may remain substantially at a ground potential VSS.
At time t3, input signal IN-n may transition from a power supply potential VDD to essentially a ground potential VSS. With input signal IN-n at a ground potential, n-channel IGFET N522 may be turned off. With n-channel IGFET N522 turned off, n-channel IGFET N524 may be allowed to pull output signal OUT-n, substantially to a power supply potential VDD.
At time t4, boot control signal BC3n may transition from a logic high level to a logic low level. In response to the high to low transition of boot control signal BC3n, boot node NBOOT may transition to a ground potential VSS. With boot node NBOOT at a ground potential VSS, n-channel IGFET N524 may be turned off. At time t5, input signal IN-n may transition to a power supply potential VDD. With input signal IN-n at a power supply potential n-channel IGFET IN-n may be turned on. With n-channel IGFET IN-n turned on, output signal OUT-n may be driven to essentially a ground potential VSS.
In this way, by raising the potential of boot node NBOOT before input signal IN-n transitions to turn off n-channel IGFET N522 and by lowering the potential of boot node NBOOT before input signal IN-n transitions to turn on n-channel IGFET N522, the speed path may be determined by input signal IN-n and inverter 520 may provide a logical inversion of input signal IN-n as an output signal OUT-n. Furthermore, by driving output signal OUT-n only by n-channel IGFETs (N522 and N524) in response to transitions in input signal IN-n, variations in the speed of inverter 520 is substantially determined by n-channel IGFETs (N522 and N524) and their process variations therefore.
Boot circuit 510 may include both p-channel IGFETs and n-channel IGFETs, however, by setting the timing of the potential of boot node NBOOT as explained, the operational speed of inverter 520 may be insubstantially impacted by the process variations of the p-channel IGFETs in boot circuit 510.
Ring oscillator stage 500 may be used in each stage (S1 to Sn) of ring oscillator circuit 400 in
Referring now to
Ring oscillator stage 700 may include a boot circuit 710, an inverter 720, and a reset stage 730.
Boot circuit 710 may receive boot control signals (BC1n, BC2n, and BC3n) and may provide a booted output signal at a boot node NBOOT. Inverter 720 may receive the booted output signal at boot node NBOOT and an input signal IN-n as inputs and may provide an output signal OUT-n as an output. Reset circuit 730 may receive reset signal RESETn as an input and may have outputs connected to boot node NBOOT and output signal OUT-n.
Boot circuit 710 may include NOR logic gate 712, NAND logic gate 714, charge circuit 716, inverters (718 and 719), and capacitor CAP700.
NOR logic gate 712 may receive boot control signals (BC3n and BC1n) as inputs and may provide an output signal. NAND logic gate 714 may receive boot control signals (BC1n and BC2n) as inputs and may provide an output signal. Charge circuit 716 may receive the output signals from NAND logic gate 714 and NOR logic gate 712, respectively, and may provide an output to boot node NBOOT. Inverter 718 may receive the output signal from NAND logic gate 714 as an input and may provide an output signal. Inverter 719 may receive the output signal from inverter 718 and may provide an output signal to a kick node NKICK. Capacitor CAP700 may have a first terminal connected to kick node NKICK and a second terminal connected to boot node NBOOT.
NOR logic gate 712 may include p-channel IGFETs (P712 and P713) connected to receive a body bias potential Vbp at respective body terminals and n-channel IGFETs (N712 and N713) connected to receive a body bias potential Vbn at respective body terminals. N-channel IGFET N712 may have a source terminal connected to ground potential, a gate terminal connected to receive boot control signal BC3n, and a drain terminal commonly connected with drain terminals of n-channel IGFET N713 and p-channel IGFET P712, respectively to provide an output signal. N-channel IGFET N713 may have a source terminal connected to ground potential VSS, and a gate terminal connected to receive boot control signal BC1n. P-channel IGFET P712 may have a source terminal commonly connected to a drain terminal of p-channel IGFET P713 and a gate terminal connected to receive boot control signal BC3n. P-channel IGFET P713 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive boot control signal BC1n.
NAND logic gate 714 may include p-channel IGFETs (P714 and P715) connected to receive a body bias potential Vbp at respective body terminals and n-channel IGFETs (N714 and N715) connected to receive a body bias potential Vbn at respective body terminals. P-channel IGFET P714 may have a source terminal connected to power supply potential VDD, a gate terminal connected to receive boot control signal BC2n, and a drain terminal commonly connected with drain terminals of p-channel IGFET P715 and n-channel IGFET N715, respectively to provide an output signal at pulse node NPULSE. P-channel IGFET P715 may have a source terminal connected to power supply potential VDD, and a gate terminal connected to receive boot control signal BC1n. N-channel IGFET N715 may have a source terminal commonly connected to a drain terminal of n-channel IGFET N714 and a gate terminal connected to receive boot control signal BC1n. N-channel IGFET N714 may have a source terminal connected to ground potential VSS and a gate terminal connected to receive boot control signal BC2n.
Charge circuit 716 may include p-channel IGFETs (P716 and P717) connected to receive a body bias potential Vbp at respective body terminals and an n-channel IGFET N716 connected to receive a body bias potential Vbn at a body terminal. N-channel IGFET N716 may have a source terminal connected to ground potential VSS, a gate terminal connected to receive the output signal from NOR logic gate 712, and a drain terminal commonly connected to a drain terminal p-channel IGFET P716 to provide an output to boot node NBOOT. P-channel IGFET P716 may have a source terminal commonly connected to a drain terminal of p-channel IGFET P717 and a gate terminal connected to receive the output signal from NAND logic gate 714 at pulse node NPULSE. P-channel IGFET P717 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive the output signal from NAND logic gate 714 at pulse node NPULSE.
Inverter 718 may include p-channel IGFET P718 connected to receive a body bias potential Vbp at a body terminal and an n-channel IGFET N718 connected to receive a body bias potential Vbn at a body terminal. N-channel IGFET N718 may have a source terminal connected to ground potential VSS, a gate terminal connected to receive the output signal from NAND logic gate 714 at pulse node NPULSE, and a drain terminal commonly connected with a drain terminal of p-channel IGFET P718 to provide an output signal. P-channel IGFET P718 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive the output signal from NAND logic gate 714 at pulse node NPULSE.
Inverter 719 may include p-channel IGFET P719 connected to receive a body bias potential Vbp at a body terminal and an n-channel IGFET N719 connected to receive a body bias potential Vbn at a body terminal. N-channel IGFET N719 may have a source terminal connected to ground potential VSS, a gate terminal connected to receive the output signal from inverter 718, and a drain terminal commonly connected with a drain terminal of p-channel IGFET P719 to provide an output signal to a kick node NKICK. P-channel IGFET P719 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive the output signal from inverter 718.
Capacitor CAP700 may include a n-channel IGFET having a source terminal and drain terminal commonly connected to kick node NKICK and a gate terminal connected to boot node NBOOT. The n-channel IGFET of capacitor CAP700 may have a body terminal connected to receive body bias potential Vbn.
Inverter 720 may include n-channel IGFETs (N722 and N724). N-channel IGFET N722 may have a source terminal connected to a ground potential, a drain terminal commonly connected to a source terminal of n-channel IGFET N724, and a gate connected to receive input signal IN-n. N-channel IGFET N724 may have a gate terminal connected to boot node NBOOT and a drain terminal connected to a power supply potential VDD. Each n-channel IGFET (N722 and N724) may have a body terminal connected to a body bias potential Vbn. N-channel IGFET N722 may have a channel region that is substantially greater drive strength than n-channel IGFET N724. As just one example, the width/length ratio of the gate region connected to the gate terminal of n-channel IGFET N722 may be about 8 times larger than the gate region of n-channel IGFET N724.
Reset circuit 730 may include p-channel IGFETs (P732, P734, and P736) connected to receive a body bias potential Vbp at respective body terminals. P-channel IGFET P732 may have a drain terminal connected to boot node NBOOT, a source terminal commonly connected to a drain terminal of p-channel IGFET P734 and a gate terminal commonly connected to a gate terminal of p-channel IGFET P734 to receive a reset signal RESETn. P-channel IGET P734 may have a source terminal connected to power supply potential VDD. P-channel IGFET P736 may have a source terminal connected to power supply potential VDD, a drain terminal connected to the output of inverter 720, and a gate terminal connected to receive reset signal RESETn.
The operation of ring oscillator stage 700 will now be explained with reference to the timing diagrams of
The ring oscillator stage 700 may be a low voltage ring oscillator stage in which power supply potential VDD may be below 1.0 volt. Power supply potential VDD may be about 0.6 volts, as one particular example.
Before time t1, input signal IN-n may be at a power supply potential VDD, boot control signal BC3n may be at a ground potential VSS, boot control signal BC2n may be at a power supply potential VDD, and boot control signal BC1n may be at a ground potential VSS. Because the gate terminal of n-channel IGFET N722 is receiving the power supply level, n-channel IGFET N722 may be turned on and output signal OUT-n may be driven to a ground potential VSS. With both boot control signals (BC1n and BC3n) at the ground potential (a low logic level), NOR logic gate 712 may provide a logic high output (power supply potential VDD) as an output signal. With n-channel IGFET N716 receiving a power supply potential VDD at a gate terminal a low impedance path to ground is provided to boot node NBOOT. In this way, boot node NBOOT can be at a ground potential VSS. With boot node NBOOT at a ground potential, n-channel IGFET N724 may be turned off.
At t1 boot control signal BC1n may transition from a low logic level (ground potential VSS) to a high logic level (power supply potential VDD). With boot control signal BC1n at a high level, the output signal of NOR logic gate 712 may be driven to a low level or a ground potential VSS. With the gate of n-channel IGFET N716 at ground potential, n-channel IGFET N716 may turn off. Also, with both boot control signals (BC1n and BC2n) at a high level, NAND logic gate 714 may provide a logic low level at essentially a ground potential VSS at pulse node NPULSE. By receiving a ground potential VSS at the gate terminals of p-channel IGFETs (P716 and P717), a low impedance path may be provided between the power supply potential VDD and boot node NBOOT. In this way, capacitor CAP700 may begin to be charged by charging circuit 716. Thus, response to the low to high transition of boot control signal BC1n, boot node NBOOT may transition from a logic low level to a power supply potential VDD. At this time, n-channel IGFET N724 may turn on. However, because n-channel IGFET N722 has a substantially greater drive strength than n-channel IGFET N724, output signal OUT-n may remain substantially at a ground potential VSS. Also, by receiving a low logic level at the input of inverter 718 at pulse node NPULSE, inverter 718 may provide a high logic level output. This high logic level output may be inverted by inverter 719 to provide a low logic level of essentially ground potential VSS at kick node NKICK.
At time t2, boot control signal BC2n may transition from a high logic level to a low logic level. With boot control signal BC2n at a high logic level, NAND logic gate 714 may provide a high logic level at pulse node NPULSE. By receiving a high logic level, p-channel IGFETs (P716 and P717) may turn off and capacitor CAP700 may stop charging. By receiving a high logic level, inverter 718 may provide a logic low level and inverter 719 may provide a logic high level. In this way, boot node NBOOT may transition to a booted potential, substantially above power supply potential VDD. In response to this, n-channel IGFET N724 may turn on harder. However, because n-channel IGFET N722 has a substantially greater drive strength than n-channel IGFET N724, output signal OUT-n may remain substantially at a ground potential VSS.
At time t3, input signal IN-n may transition from a power supply potential VDD to essentially a ground potential VSS. With input signal IN-n at a ground potential, n-channel IGFET N722 may be turned off. With n-channel IGFET N722 turned off, n-channel IGFET N724 may be allowed to pull output signal OUT-n, substantially to a power supply potential VDD.
At time t4, boot control signal BC3n may transition from a logic high level to a logic low level. With boot control signals (BC3n and BC1n) at a logic low level, NOR logic gate 712 may provide a logic high output. With n-channel IGFET N716 receiving a power supply potential VDD at a gate terminal a low impedance path to ground is provided to boot node NBOOT. In this way, boot node NBOOT can return to the ground potential VSS. With boot node NBOOT at a ground potential, n-channel IGFET N724 may be turned off.
At time t5, input signal IN-n may transition to a power supply potential VDD. With input signal IN-n at a power supply potential n-channel IGFET IN-n may be turned on. With n-channel IGFET IN-n turned on, output signal OUT-n may be driven to essentially a ground potential VSS.
As described above, boot control signals (BC1n and BC2n) may be set to provide a low going pulse output signal at pulse node NPULSE between times t1 and t2. Boot control signals (BC1n and BC2n) may be selected to provide a predetermined pulse width to allow capacitor CAP700 to charge sufficiently to allow a predetermined boot potential at boot node BOOT. Boot control signal BC3n may be used to reset the boot node to a ground potential VSS before input signal INn transitions from a logic low to a logic high level.
By raising the potential of boot node NBOOT before input signal IN-n transitions to turn off n-channel IGFET N722 and by lowering the potential of boot node NBOOT before input signal IN-n transitions to turn on n-channel IGFET N722, the speed path may be determined by input signal IN-n and inverter 720 may provide a logical inversion of input signal IN-n as an output signal OUT-n. Furthermore, by driving output signal OUT-n only by n-channel IGFETs (N722 and N724) in response to transitions in input signal IN-n, variations in the speed of inverter 720 is substantially determined by n-channel IGFETs (N722 and N724) and their process variations therefore.
Boot circuit 710 may include both p-channel IGFETs and n-channel IGFETs, however, by setting the timing of the potential of boot node NBOOT as explained, the operational speed of inverter 720 may not be substantially impacted by the process variations of the p-channel IGFETs in boot circuit 710.
Ring oscillator stage 700 may be used in each stage (S1 to Sn) of ring oscillator circuit 400 in
Referring now to
Ring oscillator stage 800 may include a boot stage 810, an inverter 820, and a reset stage 830.
Boot circuit 810 may receive boot control signals (BC1n, BC2n, and BC3n) and may provide a booted output signal at a boot node PBOOT. Inverter 820 may receive the booted output signal at boot node PBOOT and an input signal IN-n as inputs and may provide an output signal OUT-n as an output. Reset circuit 830 may receive reset signal RESETPn as an input and may have outputs connected to boot node PBOOT and output signal OUT-n.
Boot circuit 810 may include NAND logic gate 812, NOR logic gate 814, charge circuit 816, inverters (818 and 819), and capacitor CAP800.
NAND logic gate 812 may receive boot control signals (BC3n and BC1n) as inputs and may provide an output signal. NOR logic gate 814 may receive boot control signals (BC1n and BC2n) as inputs and may provide an output signal. Charge circuit 816 may receive the output signals from NOR logic gate 814 and NAND logic gate 812, respectively, and may provide an output to boot node PBOOT. Inverter 818 may receive the output signal from NOR logic gate 814 as an input and may provide an output signal. Inverter 819 may receive the output signal from inverter 818 and may provide an output signal to a kick node PKICK. Capacitor CAP800 may have a first terminal connected to kick node PKICK and a second terminal connected to boot node PBOOT.
NAND logic gate 812 may include p-channel IGFETs (P812 and P813) connected to receive a body bias potential Vbp at respective body terminals and n-channel IGFETs (N812 and N813) connected to receive a body bias potential Vbn at respective body terminals. P-channel IGFET P812 may have a source terminal connected to power supply potential VDD, a gate terminal connected to receive boot control signal BC3n, and a drain terminal commonly connected with drain terminals of p-channel IGFET P813 and n-channel IGFET P813, respectively to provide an output signal. P-channel IGFET P813 may have a source terminal connected to power supply potential VDD, and a gate terminal connected to receive boot control signal BC1n. N-channel IGFET N813 may have a source terminal commonly connected to a drain terminal of n-channel IGFET N812 and a gate terminal connected to receive boot control signal BC1n. N-channel IGFET N812 may have a source terminal connected to ground potential VSS and a gate terminal connected to receive boot control signal BC3n.
NOR logic gate 814 may include p-channel IGFETs (P814 and P815) connected to receive a body bias potential Vbp at respective body terminals and n-channel IGFETs (N814 and N815) connected to receive a body bias potential Vbn at respective body terminals. N-channel IGFET N814 may have a source terminal connected to ground potential, a gate terminal connected to receive boot control signal BC2n, and a drain terminal commonly connected with drain terminals of n-channel IGFET N815 and p-channel IGFET P814, respectively to provide an output signal at pulse node PPULSE. N-channel IGFET N815 may have a source terminal connected to ground potential VSS, and a gate terminal connected to receive boot control signal BC1n. P-channel IGFET P814 may have a source terminal commonly connected to a drain terminal of p-channel IGFET P815 and a gate terminal connected to receive boot control signal BC2n. P-channel IGFET P815 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive boot control signal BC1n.
Charge circuit 816 may include n-channel IGFETs (N816 and N817) connected to receive a body bias potential Vbn at respective body terminals and a p-channel IGFET P816 connected to receive a body bias potential Vbp at a body terminal. P-channel IGFET P816 may have a source terminal connected to power supply potential VDD, a gate terminal connected to receive the output signal from NAND logic gate 812, and a drain terminal commonly connected to a drain terminal n-channel IGFET N816 to provide an output to boot node PBOOT. N-channel IGFET N816 may have a source terminal commonly connected to a drain terminal of n-channel IGFET N817 and a gate terminal connected to receive the output signal from NOR logic gate 814 at pulse node PPULSE. N-channel IGFET N817 may have a source terminal connected to ground potential VSS and a gate terminal connected to receive the output signal from NOR logic gate 814 at pulse node PPULSE.
Inverter 818 may include p-channel IGFET P818 connected to receive a body bias potential Vbp at a body terminal and an n-channel IGFET N818 connected to receive a body bias potential Vbn at a body terminal. N-channel IGFET N818 may have a source terminal connected to ground potential VSS, a gate terminal connected to receive the output signal from NOR logic gate 814 at pulse node PPULSE, and a drain terminal commonly connected with a drain terminal of p-channel IGFET P818 to provide an output signal. P-channel IGFET P818 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive the output signal from NOR logic gate 814 at pulse node PPULSE.
Inverter 819 may include p-channel IGFET P819 connected to receive a body bias potential Vbp at a body terminal and an n-channel IGFET N819 connected to receive a body bias potential Vbn at a body terminal. N-channel IGFET N819 may have a source terminal connected to ground potential VSS, a gate terminal connected to receive the output signal from inverter 818, and a drain terminal commonly connected with a drain terminal of p-channel IGFET P819 to provide an output signal to a kick node PKICK. P-channel IGFET P819 may have a source terminal connected to power supply potential VDD and a gate terminal connected to receive the output signal from inverter 818.
Capacitor CAP800 may include a p-channel IGFET having a source terminal and drain terminal commonly connected to kick node PKICK and a gate terminal connected to boot node PBOOT. The p-channel IGFET of capacitor CAP800 may have a body terminal connected to receive body bias potential Vbp.
Inverter 820 may include p-channel IGFETs (P822 and P824). P-channel IGFET P822 may have a source terminal connected to a power potential VDD, a drain terminal commonly connected to a source terminal of p-channel IGFET P824, and a gate connected to receive input signal IN-n. P-channel IGFET P824 may have a gate terminal connected to boot node PBOOT and a drain terminal connected to a ground potential VSS. Each p-channel IGFET (P822 and P824) may have a body terminal connected to a body bias potential Vbp. P-channel IGFET P822 may have a channel region that is substantially greater drive strength than p-channel IGFET P824. As just one example, the width/length ratio of the gate region connected to the gate terminal of p-channel IGFET P822 may be about 8 times larger than the gate region of p-channel IGFET P824.
Reset circuit 830 may include n-channel IGFETs (N832, N834, and N836) connected to receive a body bias potential Vbn at respective body terminals. N-channel IGFET N832 may have a drain terminal connected to boot node PBOOT, a source terminal commonly connected to a drain terminal of n-channel IGFET N834 and a gate terminal commonly connected to a gate terminal of n-channel IGFET N834 to receive a reset signal RESETPn. N-channel IGET N834 may have a source terminal connected to ground potential VSS. N-channel IGFET N836 may have a source terminal connected to ground potential VSS, a drain terminal connected to the output of inverter 820, and a gate terminal connected to receive reset signal RESETPn.
Ring oscillator stage 800 may operate in essentially the manner as ring oscillator stage 700 as described previously except the signals may be inverted. As one example the boot signal at boot node PBOOT may be first driven from a power supply potential VSS and then booted to a negative boot potential. In this way, p-channel IGFET P824 may be turned on harder to provide adequate current drive at output signal OUT-n transitioning to a ground potential VSS.
Boot control signals (BC1n and BC2n) may be set to provide a high going pulse output signal at pulse node PPULSE. Boot control signals (BC1n and BC2n) may be selected to provide a predetermined pulse width to allow capacitor CAP800 to charge sufficiently to allow a predetermined negative boot potential at boot node PBOOT. Boot control signal BC3n may be used to reset the boot node PBOOT to a power supply potential VDD before input signal INn transitions from a logic high to a logic low level.
By lowering the potential of boot node PBOOT to a negative boot potential before input signal IN-n transitions to turn off p-channel IGFET P822 and by raising the potential of boot node PBOOT to a power supply potential VDD before input signal IN-n transitions to turn on p-channel IGFET P822, the speed path may be determined by input signal IN-n and inverter 820 may provide a logical inversion of input signal IN-n as an output signal OUT-n. Furthermore, by driving output signal OUT-n only by p-channel IGFETs (P822 and P824) in response to transitions in input signal IN-n, variations in the speed of inverter 820 is substantially determined by p-channel IGFETs (P822 and P824) and their process variations therefore.
Boot circuit 810 may include both p-channel IGFETs and n-channel IGFETs, however, by setting the timing of the potential of boot node PBOOT as explained, the operational speed of inverter 820 may be not be substantially impacted by the process variations of the n-channel IGFETs in boot circuit 810.
Ring oscillator stage 800 may be used in each stage (S1 to Sn) of ring oscillator circuit 400 in
Referring now to
The first column indicates fast or slow corner n-channel IGFET, the second column indicates fast or slow corner p-channel IGFET, and the third column indicates the period of oscillation of the output OSCOUTN (
For reference, a simulation using typical n-channel IGFETs and typical p-channel IGFETs is included that shows a period of oscillation of about 5.0 ns. This data may be used to determine how to program the programmable circuits132 in voltage generator 130 in the semiconductor circuit 100 of
Referring now to
The first column indicates fast or slow corner p-channel IGFET, the second column indicated fast or slow corner n-channel IGFET, and the third column indicates the period of oscillation of the output OSCOUTP (
For reference, a simulation using typical p-channel IGFETs and typical n-channel IGFETs is included that shows a period of oscillation of about 5.0 ns. This data may be used to determine how to program the programmable circuits142 in voltage generator 140 in the semiconductor circuit 100 of
The appearance of the phrase “in one embodiment” in various places in the specification do not necessarily refer to the same embodiment. The term “to couple” or “electrically connect” as used herein may include both to directly and to indirectly connect through one or more intervening components. While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. Accordingly, the specifications and drawings are to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh et al. | May 1977 | A |
4242691 | Kotani et al. | Dec 1980 | A |
4276095 | Beilstein, Jr. et al. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4578128 | Mundt et al. | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4761384 | Neppl et al. | Aug 1988 | A |
4819043 | Yazawa et al. | Apr 1989 | A |
5034337 | Mosher et al. | Jul 1991 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee et al. | Nov 1992 | A |
5208473 | Komori et al. | May 1993 | A |
5298763 | Shen et al. | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5384476 | Nishizawa et al. | Jan 1995 | A |
5559368 | Hu et al. | Sep 1996 | A |
5608253 | Liu et al. | Mar 1997 | A |
5663583 | Matloubian et al. | Sep 1997 | A |
5712501 | Davies et al. | Jan 1998 | A |
5719422 | Burr et al. | Feb 1998 | A |
5726488 | Watanabe et al. | Mar 1998 | A |
5780899 | Hu et al. | Jul 1998 | A |
5847419 | Imai et al. | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu et al. | Mar 1999 | A |
5889315 | Farrenkopf et al. | Mar 1999 | A |
5895954 | Yasumura et al. | Apr 1999 | A |
5923987 | Burr | Jul 1999 | A |
5989963 | Luning et al. | Nov 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son et al. | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito et al. | Jan 2001 | B1 |
6184112 | Maszara et al. | Feb 2001 | B1 |
6190979 | Radens et al. | Feb 2001 | B1 |
6194259 | Nayak et al. | Feb 2001 | B1 |
6218895 | De et al. | Apr 2001 | B1 |
6229188 | Aoki et al. | May 2001 | B1 |
6245618 | An et al. | Jun 2001 | B1 |
6288429 | Iwata et al. | Sep 2001 | B1 |
6300177 | Sundaresan et al. | Oct 2001 | B1 |
6313489 | Letavic et al. | Nov 2001 | B1 |
6320222 | Forbes et al. | Nov 2001 | B1 |
6326666 | Bernstein et al. | Dec 2001 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu et al. | Apr 2002 | B1 |
6391752 | Colinge et al. | May 2002 | B1 |
6426279 | Huster et al. | Jul 2002 | B1 |
6444550 | Hao et al. | Sep 2002 | B1 |
6444551 | Ku et al. | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall et al. | Oct 2002 | B1 |
6482714 | Hieda et al. | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang et al. | Dec 2002 | B1 |
6500739 | Wang et al. | Dec 2002 | B1 |
6503801 | Rouse et al. | Jan 2003 | B1 |
6506640 | Ishida et al. | Jan 2003 | B1 |
6518623 | Oda et al. | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6548842 | Bulucea et al. | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6573129 | Hoke et al. | Jun 2003 | B2 |
6597218 | Gauthier et al. | Jul 2003 | B1 |
6600200 | Lustig et al. | Jul 2003 | B1 |
6620671 | Wang et al. | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6667200 | Sohn et al. | Dec 2003 | B2 |
6670260 | Yu et al. | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda et al. | May 2004 | B2 |
6743291 | Ang et al. | Jun 2004 | B2 |
6753230 | Sohn et al. | Jun 2004 | B2 |
6770944 | Nishinohara et al. | Aug 2004 | B2 |
6797994 | Hoke et al. | Sep 2004 | B1 |
6808994 | Wang | Oct 2004 | B1 |
6812527 | Dennard et al. | Nov 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6822297 | Nandakumar et al. | Nov 2004 | B2 |
6831292 | Currie et al. | Dec 2004 | B2 |
6881641 | Wieczorek et al. | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6893947 | Martinez et al. | May 2005 | B2 |
6916698 | Mocuta et al. | Jul 2005 | B2 |
6930007 | Bu et al. | Aug 2005 | B2 |
6930360 | Yamauchi et al. | Aug 2005 | B2 |
6963090 | Passlack et al. | Nov 2005 | B2 |
6967522 | Chandrakasan et al. | Nov 2005 | B2 |
7002214 | Boyd et al. | Feb 2006 | B1 |
7008836 | Algotsson et al. | Mar 2006 | B2 |
7013359 | Li | Mar 2006 | B1 |
7015546 | Herr et al. | Mar 2006 | B2 |
7057216 | Ouyang et al. | Jun 2006 | B2 |
7061058 | Chakravarthi et al. | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock et al. | Jun 2006 | B2 |
7071103 | Chan et al. | Jul 2006 | B2 |
7078325 | Curello et al. | Jul 2006 | B2 |
7078776 | Nishinohara et al. | Jul 2006 | B2 |
7089515 | Hanafi et al. | Aug 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7170120 | Datta et al. | Jan 2007 | B2 |
7186598 | Yamauchi et al. | Mar 2007 | B2 |
7189627 | Wu et al. | Mar 2007 | B2 |
7199430 | Babcock et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu et al. | May 2007 | B2 |
7223646 | Miyashita et al. | May 2007 | B2 |
7226833 | White et al. | Jun 2007 | B2 |
7226843 | Weber et al. | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7294877 | Rueckes et al. | Nov 2007 | B2 |
7297994 | Wieczorek et al. | Nov 2007 | B2 |
7301208 | Handa et al. | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7312500 | Miyashita et al. | Dec 2007 | B2 |
7323754 | Ema et al. | Jan 2008 | B2 |
7332439 | Lindert et al. | Feb 2008 | B2 |
7348629 | Chu et al. | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7427788 | Li et al. | Sep 2008 | B2 |
7442971 | Wirbeleit et al. | Oct 2008 | B2 |
7462908 | Bol et al. | Dec 2008 | B2 |
7485536 | Jin et al. | Feb 2009 | B2 |
7491988 | Tolchinsky et al. | Feb 2009 | B2 |
7494861 | Chu et al. | Feb 2009 | B2 |
7498637 | Yamaoka et al. | Mar 2009 | B2 |
7501324 | Babcock et al. | Mar 2009 | B2 |
7507999 | Kusumoto et al. | Mar 2009 | B2 |
7521323 | Surdeanu et al. | Apr 2009 | B2 |
7531393 | Doyle et al. | May 2009 | B2 |
7531836 | Liu et al. | May 2009 | B2 |
7538412 | Schulze et al. | May 2009 | B2 |
7564105 | Chi et al. | Jul 2009 | B2 |
7592241 | Takao | Sep 2009 | B2 |
7598142 | Ranade et al. | Oct 2009 | B2 |
7605041 | Ema et al. | Oct 2009 | B2 |
7605060 | Meunier-Beillard et al. | Oct 2009 | B2 |
7605429 | Bernstein et al. | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt et al. | Nov 2009 | B2 |
7622341 | Chudzik et al. | Nov 2009 | B2 |
7642140 | Bae et al. | Jan 2010 | B2 |
7645665 | Kubo et al. | Jan 2010 | B2 |
7651920 | Siprak | Jan 2010 | B2 |
7655523 | Babcock et al. | Feb 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7678638 | Chu et al. | Mar 2010 | B2 |
7681628 | Joshi et al. | Mar 2010 | B2 |
7682887 | Dokumaci et al. | Mar 2010 | B2 |
7683442 | Burr et al. | Mar 2010 | B1 |
7696000 | Liu et al. | Apr 2010 | B2 |
7704844 | Zhu et al. | Apr 2010 | B2 |
7709828 | Braithewaite et al. | May 2010 | B2 |
7723750 | Zhu et al. | May 2010 | B2 |
7728677 | Logan | Jun 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein et al. | Jul 2010 | B2 |
7755146 | Helm et al. | Jul 2010 | B2 |
7759714 | Itoh et al. | Jul 2010 | B2 |
7795677 | Bangsaruntip et al. | Sep 2010 | B2 |
7818702 | Mandelman et al. | Oct 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
7867835 | Lee et al. | Jan 2011 | B2 |
7883977 | Babcock et al. | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7897495 | Ye et al. | Mar 2011 | B2 |
7906413 | Cardone et al. | Mar 2011 | B2 |
7906813 | Kato | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7948008 | Liu et al. | May 2011 | B2 |
7952147 | Ueno et al. | May 2011 | B2 |
7960232 | King et al. | Jun 2011 | B2 |
7960238 | Kohli et al. | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
8004024 | Furukawa et al. | Aug 2011 | B2 |
8012827 | Yu et al. | Sep 2011 | B2 |
8039332 | Bernard et al. | Oct 2011 | B2 |
8048791 | Hargrove et al. | Nov 2011 | B2 |
8048810 | Tsai et al. | Nov 2011 | B2 |
8067279 | Sadra et al. | Nov 2011 | B2 |
8105891 | Yeh et al. | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8119482 | Bhalla et al. | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock et al. | Mar 2012 | B2 |
8129797 | Chen et al. | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr et al. | Mar 2012 | B2 |
8143124 | Challa et al. | Mar 2012 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8148774 | Mori et al. | Apr 2012 | B2 |
8163619 | Yang et al. | Apr 2012 | B2 |
8173502 | Yan et al. | May 2012 | B2 |
8174282 | Fujii et al. | May 2012 | B2 |
8178430 | Kim et al. | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur et al. | May 2012 | B2 |
8236661 | Dennard et al. | Aug 2012 | B2 |
8354671 | Im et al. | Jan 2013 | B1 |
8415744 | Cai et al. | Apr 2013 | B2 |
8419274 | Chen et al. | Apr 2013 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20030122203 | Nishinohara et al. | Jul 2003 | A1 |
20030183856 | Wieczorek et al. | Oct 2003 | A1 |
20040075118 | Heinemann et al. | Apr 2004 | A1 |
20040084731 | Matsuda et al. | May 2004 | A1 |
20050048703 | Dennard et al. | Mar 2005 | A1 |
20050116282 | Pattanayak et al. | Jun 2005 | A1 |
20050250289 | Babcock et al. | Nov 2005 | A1 |
20060022270 | Boyd et al. | Feb 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068555 | Zhu et al. | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20070040222 | Van Camp et al. | Feb 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20080067589 | Ito et al. | Mar 2008 | A1 |
20080169493 | Lee et al. | Jul 2008 | A1 |
20080197439 | Goerlach et al. | Aug 2008 | A1 |
20080227250 | Ranade et al. | Sep 2008 | A1 |
20080258198 | Bojarczuk et al. | Oct 2008 | A1 |
20080272409 | Sonkusale et al. | Nov 2008 | A1 |
20090057746 | Sugll et al. | Mar 2009 | A1 |
20090108350 | Cai et al. | Apr 2009 | A1 |
20090134468 | Tsuchiya et al. | May 2009 | A1 |
20090302388 | Cai et al. | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20090321849 | Miyamura et al. | Dec 2009 | A1 |
20100012988 | Yang et al. | Jan 2010 | A1 |
20100038724 | Anderson et al. | Feb 2010 | A1 |
20100187641 | Zhu et al. | Jul 2010 | A1 |
20110012672 | Ogawa | Jan 2011 | A1 |
20110073961 | Dennard et al. | Mar 2011 | A1 |
20110074498 | Thompson et al. | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren et al. | Apr 2011 | A1 |
20110169082 | Zhu et al. | Jul 2011 | A1 |
20110175170 | Wang et al. | Jul 2011 | A1 |
20110180880 | Chudzik et al. | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20120021594 | Gurtei et al. | Jan 2012 | A1 |
20120056275 | Cai et al. | Mar 2012 | A1 |
20120108050 | Chen et al. | May 2012 | A1 |
20120190177 | Kim et al. | Jul 2012 | A1 |
20120327725 | Clark et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
59-193066 | Nov 1984 | JP |
4-186774 | Jul 1992 | JP |
8-153873 | Jun 1996 | JP |
8-288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
2011062788 | May 2011 | WO |
Entry |
---|
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15μm n—n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995. |
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001. |
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006. |
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006. |
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000. |
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008. |
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009. |
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001. |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996. |
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002. |
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998. |
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999. |
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002. |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000. |
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998. |
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999. |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997. |
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19, 1998. |
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996. |
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998. |
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992. |