This invention relates in general to drilling risers for offshore well drilling, and in particular to a device for handing forces imposed by buoyancy modules attached to the drilling risers.
Drilling risers are employed while drilling an offshore well. The drilling riser extends from a subsea wellhead on the sea floor to a drilling platform on the surface. A typical drilling riser has a central riser pipe and a number of auxiliary pipes or lines. The operator rims drill pipe, casing, and various tools through central pipe of the riser. The auxiliary lines are parallel to the central pipe, spaced around it, and have smaller diameters. The operator supplies hydraulic fluid through some of the auxiliary lines and employs others as choke and kill lines.
Normally, drilling risers utilize buoyancy to reduce the overall weight of the components in water. One type of buoyancy comprises modules of buoyant material. The modules push upward on the riser couplings while in water due to the buoyancy. While in air, the weight of the modules transfer to the riser couplings. The modules tend to move upward while in water, and this movement is resistant by a variety of devices. The devices may be complex or use friction to resist the upward movement. These devices also include thrust columns that have adjustment notches.
In this invention, upper and lower thrust flanges are carried by at least one of the auxiliary lines. The upper thrust flange is at an upper end of a buoyancy module assembly, and the lower thrust flange is at a lower end of the buoyancy module assembly. An upper thrust link extends between the upper thrust flange and an upper support flange secured to the central riser pipe. The upper thrust link transfers an upward force imposed by the buoyancy module assembly while submersed to the upper support flange. A lower thrust link extends between the lower thrust flange and a lower support flange of the central riser pipe. The lower thrust link transfers a downward force imposed by the weight of the buoyancy module while out of water to the lower support flange.
The upper thrust flange is axially movable relative to the auxiliary line on which it is carried so that upward thrust forces applied to the upper thrust flange pass through the upper thrust link directly to the upper support flange, bypassing the auxiliary line on which the upper thrust flange is carried.
An adjustment mechanism adjusts a distance from one of the thrust flanges to the other. In the preferred embodiment, a set of external threads is located on at least one of the auxiliary lines. A threaded nut is in engagement with the external threads. One of the thrust links is engaged by the threaded nut so as to selectively position one of the thrust flanges at a selected point along a length of the assembly.
Preferably, there are two of the upper flanges and two lower flanges, each spaced 180 degrees apart from the other relative to an axis of the central riser pipe. In the preferred embodiment, the upper and lower thrust links comprise thrust sleeves, each receiving one of the auxiliary lines.
Referring to
An upper support flange 19 extends radially outward from upper connector 15. Similarly, a lower support flange 21 extends radially outward from lower connector 17. Support flanges 19 and 21 are located in parallel planes perpendicular to an axis 22 of main riser pipe 13.
Several auxiliary pipes or lines 23 are mounted around and parallel to main riser pipe 13. Each auxiliary line 23 is smaller in diameter than main riser pipe 13 and is parallel with axis 22. Auxiliary lines 23 serve various purposes, such as choke and kill lines and hydraulic fluid supply lines. Typically, the auxiliary lines 23 serving as choke and kill lines are larger in diameter than those serving as hydraulic fluid supply lines, but this is not essential.
Each auxiliary line 23 has a box connector or coupling 25 on one end and a pin connector or coupling 26 on an opposite end for connection to auxiliary lines 23 of adjacent riser joint assemblies. In this example, box coupling 25 is on the upper end and pin coupling 26 on the lower end, but that could be reversed. The types of couplings 25, 26 may vary. The upper coupling 25 of each auxiliary line 23 slides into a slot 27 (
An upper thrust sleeve 29 is located on least two of the auxiliary lines 23. Each upper thrust sleeve 29 is a tubular member with an upper end that abuts the lower side of upper support flange 19. The inner diameter of each upper thrust sleeve 29 is large enough to slide over pin coupling 26 before it is inserted into a hole in lower support flange 21, but not large enough to slide over box coupling 25. Each upper thrust sleeve 29 has a flange 31 that extends radially outward from it. Flange 31 is located at the lower end of each upper thrust sleeve 29 in this example. Also, in this embodiment, the two upper thrust sleeves 29 are located on auxiliary lines 23 that are 180° apart from each other relative to axis 22. Also, upper thrust sleeves 29 are located on the auxiliary lines 23 that are larger in diameter and serve as choke and kill lines, but this is not necessary. They could be located on the smaller auxiliary lines 23. In this embodiment, each upper thrust sleeve 29 is axially slidable on its auxiliary line 23, such that any upward directed forces applied to its flange 31 would be transmitted to upper support flange 19 and upper connector 15, and not to its auxiliary line 23.
A lower thrust sleeve 33 is located on a lower portion of at least two of the auxiliary lines 23. In this embodiment, each lower thrust sleeve 33 is on one of the auxiliary lines 23 that also contains one of the upper thrust sleeve 29. Each lower thrust sleeve 33 is also a tubular member that slides over the pin coupling 26 of one of the auxiliary lines 23 before pin coupling 26 is inserted into a hole in lower support flange 21. Each lower thrust sleeve 33 has a flange 35 on its upper end that extends radially outward from lower thrust sleeve 33. Lower thrust sleeves 33 are also located on auxiliary lines 23 that are 180° apart from each other. However, lower thrust sleeves 33 do not have to be on the same auxiliary lines 23 as upper thrust sleeves 31.
The positions of either the upper or the lower thrust sleeves 31, 33 or both are adjustable. In this embodiment, lower thrust sleeves 33 are adjustable so as to position their flanges 35 at a selected distance from flanges 31 of upper thrust sleeves 29. This is handled by providing each lower thrust sleeve 33 with a nut 37, which is integrally secured or welded to the lower end of each lower thrust sleeve 33. Nuts 37 engage threads 39 that are formed on the lower portions of auxiliary lines 23. Rotating each lower thrust sleeve 33 in one direction will move flanges 35 upward; rotating lower thrust sleeves 33 in the other direction will advance nuts 37 down threads 39 and move flanges 35 downward. A set screw (not shown) is employed to secure each nut 37 when its flange 35 is in the desired position.
A number of buoyant module sections 41 are mounted between upper thrust sleeve flange 31 and lower thrust sleeve flange 35 to add buoyancy to riser joint assembly 11. Module sections 41 may be formed of a conventional material used for that purpose, such as a foam containing beads. Module sections 41 are mounted end-to-end along the length of riser joint assembly 11. Each module section 41 comprises two semi-cylindrical members that mate to each other around riser joint assembly 11 and provide a cylindrical exterior configuration. Each half of each module section 41 has inner recesses formed to fit around main riser pipe 13 and the various auxiliary lines 23. Bands or straps 47 are employed around their exterior sides to secure the two halves of each buoyant member module section 41 together. The upper end of the uppermost module section 41 will be at upper thrust sleeve flange 31. Lower thrust sleeve flange 35 will be adjusted to be in contact with the lower end of the lowermost module section 41.
A number of clamps 43 (
Buoyant module sections 41 are assembled into riser joint assembly 11 by placing the halves of each module around main riser pipe 13 and clamping them together with bands 47. The ends of each module section 41 will abut ends of adjacent module sections 41 above and/or below. Once assembled, lower thrust sleeves 33 are adjusted so that their flanges 35 abut the lower end of the lowermost buoyant module section 41.
In operation, when riser joint assembly 11 is out of the water, the weight of each buoyant module section 41 transfers to the next lower module section 41 due to their end-to-end abutments. The lowermost module section 41 transfers the cumulative weight to lower thrust sleeve flanges 35, which serves as a thrust link to transfer the cumulative weight to auxiliary lines 23 and to lower support flange 21 and main riser pipe 13. As riser joint assembly 11 is lowered into the water, a buoyant force will be exerted by buoyant module sections 41. The buoyant forces pass up the modules 41 due to their end-to-end abutments and to upper thrust sleeve flanges 31. Upper thrust sleeve flanges 31 transfer the forces through upper thrust sleeve 29, which serves as an upper thrust link, to upper support flange 19 and upper connector 15.
While the invention has been shown in only one of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.
This application claims priority to provisional application Ser. No. 61/173,401, filed Apr. 28, 2009.
Number | Name | Date | Kind |
---|---|---|---|
3705432 | Watkins, Jr. | Dec 1972 | A |
3729756 | Cook et al. | May 1973 | A |
3981357 | Walker et al. | Sep 1976 | A |
4078605 | Jones | Mar 1978 | A |
4097069 | Morrill | Jun 1978 | A |
4102142 | Lee | Jul 1978 | A |
4249610 | Loland | Feb 1981 | A |
4330140 | Hampton | May 1982 | A |
4332509 | Reynard et al. | Jun 1982 | A |
4477207 | Johnson | Oct 1984 | A |
4596531 | Schawann et al. | Jun 1986 | A |
4646840 | Bartholomew et al. | Mar 1987 | A |
5330294 | Guesnon | Jul 1994 | A |
5390966 | Cox et al. | Feb 1995 | A |
6367846 | Aaron, III | Apr 2002 | B1 |
6571878 | McDaniel et al. | Jun 2003 | B2 |
6637513 | van der Poel | Oct 2003 | B1 |
6805201 | Nish et al. | Oct 2004 | B2 |
6848863 | Karayaka et al. | Feb 2005 | B2 |
7096957 | Nish et al. | Aug 2006 | B2 |
7097387 | Karayaka et al. | Aug 2006 | B2 |
7630866 | Guesnon et al. | Dec 2009 | B2 |
20020112858 | McDaniel et al. | Aug 2002 | A1 |
20090212092 | Stol | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
1850044 | Oct 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20100270025 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61173401 | Apr 2009 | US |