FIELD OF PRESENT DISCLOSURE
This present disclosure relates to riser joint connection.
BACKGROUND INFORMATION
Risers are commonly used to provide a flow path between subsea reservoir and topside facility. A typical riser string has many riser joints, using various couplings. Usually, in terms of both strength and fatigue, riser joint connections are the weak points in a riser string. As risers are used tinder increasingly harsher environments, such as situations demanding higher tension load, higher bending load, higher internal pressure, and higher dynamic fatigue load, making riser joint connections that can withstand such harsher conditions has become a challenge. Apparatus and methods have been proposed for making riser joint connections that can meet the challenge.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1 is a diagram showing the overview of an embodiment of the riser joint connection.
FIG. 2 is a diagram showing the cross-sectional view of the central coupler of an embodiment of the riser joint connection.
FIG. 3 is a diagram showing the cross-sectional view of the reaction collar of an embodiment of the riser joint connection.
FIG. 4 is a diagram showing the cross-sectional view of the collar cap of an embodiment of the riser joint connection.
FIG. 5 is a diagram showing the C-ring of an embodiment of the riser joint connection.
DETAILED DESCRIPTION
This document discloses apparatus and methods related to riser joint connection. FIG. 1 shows an implementation of the apparatus and methods for riser joint connection, which include a central coupler 12, two reaction collars 13A and 13B, two collar stoppers 14A and 14B, which can be mounted to the outer surface of the riser joints 11A and 1113 through, for example, threaded sections, two collar caps 17A and 17B, and four C-rings 15A, 15B, 16A, and 16B. Riser joints 11A and 11B are in contact with the central coupler 12 to form a seating surface. C-rings 15A and 16A, and C-rings 15B and 16B are in contact with the outer surface of the riser joints 11A and 11B and the inner surface of the reaction collars 13A and 13B, respectively, to form a load bearing surface.
FIG. 2 shows that, in some implementations, the central coupler 12 has two sloped surfaces 21A and 21B at its inner side, and has threaded sections 22A and 22B at the two ends. In some implementations, the two sloped surfaces 21A and 21B are in contact with the surfaces of the ends of the riser joints to be connected and form a tight sealing to contain the internal passage of matters within the riser. In some implementations, the surfaces of the ends of the riser joints are sloped to create a tight seating against the inner sloped surfaces 21A and 2113 of the central coupler 12.
FIG. 3 shows that, in some implementations, the reaction collar 13 has an upper groove 31, a lower groove 32, an upper threaded section 33, and a lower threaded section 34. In some implementations, the upper and lower grooves can have sloped walls, creating a wider side and a narrower side within the grooves for fitting the C-rings.
FIG. 4 shows that, in some implementations, the collar cap 17 has a C-ring locker 41 and a threaded section 42.
FIG. 5 shows that, in some implementations, the C-ring 16 has a gap opening 51, which can allow the C-ring to reduce its diameter and fit on the riser surface when subject to external force. In some implementations, the C-ring has a tapered cross section, such that one end is wider than the other end.
In some implementations, the riser joint connection can be made as follows: (i) mount the C-rings 15 and 16 into the reaction collar 13; (ii) slide the collar cap 17 and reaction collar 13 onto the riser joint 11, then mount the collar stopper 14; (iii) align upper riser joint 11A and lower riser joint 11B, and insert the central coupler 12; (iv) torque the reaction collars 13 to a certain torque value, such that the riser joints 11 are pushed against the central coupler 12 tightly, and lower C-rings 15 are fitted tightly in the gap between the riser joints 11 outer surface and reaction collars 13; and (v) torque the collar caps 17 to a certain torque value, such that the upper C-rings 16 are fitted tightly in the gap between riser joints 11 outer surface and reaction collars 13.
In some implementations, the riser joints 11 can have their ends machined to have a sloped configuration that matches the inner sloped surfaces 21 of the central coupler 12. In some implementations, the sealing created by this kind of fitting can withstand a pressure rating up to 10,000 psi.
OTHER EMBODIMENTS
Various other adaptations and combinations of features of the embodiments and implementations disclosed are within the scope of the present disclosure. It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.